Control PID robusto: Una visión panorámica

Ramón Vilanova, Víctor M. Alfaro

Resumen

En este trabajo se presenta una perspectiva general de los diferentes enfoques existentes, con que se ha afrontado el problema de obtener un controlador proporcional integral derivativo (PID) robusto. La estructura restringida y muy particular que impone el controlador PID, supone por un lado, un atractivo que ha sido la causa de su extenso uso en el sector industrial, pero por el otro, impone una serie de dificultades al plantear la incorporación de consideraciones de robustez en su diseño. Hoy en día, el abanico de posibilidades de diseño de un controlador PID es realmente amplio, pudiendo afrontarse con pŕacticamente cualquier enfoque, en concreto con cualquier enfoque de control robusto. A este respecto, es importante distinguir entre los métodos y las reglas de sintonía, siendo de especial inteŕes en el caso del controlador PID, la generacíon de reglas de sintonía a la vez simples y que proporcionen ciertas garantías de robustez. Como paso previo a esta clasificacíon, conviene establecer de qúe manera se representa y mide la robustez. Por lo tanto, de qúe manera acaba formuĺandose como especificacíon de disẽno. El trabajo repasa tambíen, conceptos aparecidos recientemente en la literatura del control PID y relacionados con la robustez, como son el cumplimiento de la misma y la fragilidad del controlador.

Palabras clave

Control PID; Robustez; Incertidumbre

Texto completo:

PDF

Referencias

Alcántara, S., Pedret, C., Vilanova, R., 2010a. On the model matching approach to PID design: Analytical perspective for robust servo/regulator tradeoff tuning. Journal of Process Control 20, 596–608.

Alcántara, S., Pedret, C., Vilanova, R., Zhang, W., 2010b. Simple analytical min-max model matching approach to robust proportional-integrativederivative tuning with smooth set-point response. Ind. Eng. Chem. Res 49, 690–700.

Alcántara, S., Zhang, W., Pedret, C., Vilanova, R., Skogestad, S., 2011. IMC-like analytical hinf design with s/sp mixed sensitivity consideration: Utility in PID tuning guidance. Journal of Process Control (accepted for publication).

Alfaro, V. M., 2006. Identificación de modelos de orden reducido a partir de la curva de reacción del proceso. Ciencia y Tecnología (Costa Rica) 24 (2), 197–216.

Alfaro, V. M., 2007. PID controllers’ fragility. ISA Transactions 46, 555–559.

Alfaro, V. M., Vilanova, R., Arrieta, O., 2009a. Considerations on Set-Point Weight choice for 2-DoF PID Controllers. In: IFAC International Symposium on Advanced Control on Chemical Process (ADCHEM 2009). 12-15 July, Istambul, Turkey.

Alfaro, V. M., Vilanova, R., Arrieta, O., 2009b. Fragility Analysis of PID Controllers. In: 18th International Conference on Control Applications part of the 2009 IEEE Multi-Conference on Systems and Control (CCA2009). July 8-9, Saint Petersburg, Russia.

Alfaro, V. M., Vilanova, R., Arrieta, O., 2009c. NORT: a Non-Oscillatory Robust Tuning Approach for 2-DoF PI Controllers. In: 18th International Conference on Control Applications part of the 2009 IEEE Multi-Conference on Systems and Control (CCA2009). July 8-9, Saint Petersburg, Russia.

Alfaro, V. M., Vilanova, R., Arrieta, O., 2009d. A Single-Parameter Robust Tuning Approach for Two-Degree-of-Freedom PID Controllers. In: European Control Conference (ECC2009). August 23-26, Budapest, Hungary.

Alfaro, V. M., Vilanova, R., Arrieta, O., 2010. Maximum Sensivity Based Robust Tuning for Two-Degree-of-Freedom Proportional-Integral Controllers. Ind. Eng. Chem. Res. 49, 5415–5423.

Åström, K., Hägglund, T., 2004. Revisiting the Ziegler-Nichols step respose method for PID control. Journal of Process Control 14, 635–650.

Åström, K. J., Hägglund, T., 1984. Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20 (5), 645–651.

Åström, K. J., Hägglund, T., 1995. PID Controllers: Theory, Design and Tuning. Instrument Society of America, Research Triangle Park, NC, USA.

Åström, K. J., Hägglund, T., 2006. Advanced PID Control. ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC, USA.

Åström, K. J., Panagopoulos, H., Hägglund, T., 1998. Design of PI Controllers based on Non-Convex Optimization. Automatica 34(5), 585–601.

Babb, M., October 1990. Pneumatic Instruments Gave Birth to Automatic Control. Control Engineering 37 (12), 20–22.

Bennett, S., April 2000. The Past of PID Controllers. In: IFAC Digital Control: Past, Present and Future of PID Control. Terrassa, Spain.

Blanchini, F., Lepschy, A., Miani, S., Viaro, U., 2004. Characterization of PID and lead/lag compensators satisfying given hinf specifications. IEEE Trans. Automat. Contr. 48 (5), 736–740.

Chen, D., Seborg, D. E., 2002. PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res 41, 4807–4822.

Chien, I., Fruehauf, P. S., 1990. Consider IMC tuning to improve performance. Chemical Engineering Progress, 33–41.

Chien, K. L., Hrones, J. A., Reswick, J. B., 1952. On the automatic Control of generalized passive systems. Trans. ASME, 175–185.

Crowe, J., Johnson, M. A., 2002. Automated maximum sensitivity and phase margin specification attainment in PI control. Asian Journal of Control 4(4), 388–396.

Dahlin, E. G., 1968. Designing and tuning digital controllers. Instrumentation and Control Systems 41 (6), 77–81.

Ge, M., Chiu, M.-S., Wang, Q.-G., 2002. Robust PID controller design via lmi approach. Journal of Process Control 12 (1), 3–13.

Gerry, J. P., Hansen, P. D., 1987. Choosing the Right Controller. Chemical Engineering May 25, 65–68.

Goncalves, E. N., Palhares, R. M., Takahashi, R. H. C., 2008. A novel approach for h2/hinf robust pid synthesis for uncertain systems. Journal of Process Control 18 (1), 19–26.

Grassi, E., Tsakalis, K., Dash, S., Gaikwad, S., MacArthur, W., Stein, G., 2001. Integrated system identification and pid controller tuning by frequency loopshaping. IEEE Trans. Contr. Syst. Technol 48 (2), 285–294.

Grigoriadis, K. M., Skelton, R. E., 1996. Low-order control design for lmi problems using alternating projection methods. Automatica 32 (8), 1117–1125.

Grimble, M. J., 1994. Robust Industrial Control. Optimal design Approach for Polynomial Systems. Prentice-Hall International.

Hägglund, T., Åström, K. J., 2002. Revisiting the Ziegler-Nichols tuning rules for PI control. Asian Journal of Control 4, 354–380.

Hägglund, T., Åström, K. J., 2004. Revisiting the Ziegler-Nichols tuning rules for PI control - part II, the frequency response method. Asian Journal of Control 6, 469–482.

Hara, S., Iwasaki, T., Shiokata, D., 2006. Robust PID control using generalized kyp synthesis: Direct open-loop shaping in multiple frequency ranges. IEEE Control Systems Magazine 26 (1), 80–91.

Herreros, A., Baeyens, E., Peran, J. R., 2002. Design of PID-type controllers using multiobjective genetic algorithms. ISA Transactions 41 (4), 457–472.

Ho, M.-T., Datta, A., Bhattacharyya, S. P., 2001. Robust and Non-Fragile PID controller design. International Journal of Robust and Nonlinear Control 11, 681–708.

Ho, W. K., Gan, O. P., Tay, E. B., Ang, E. L., 1996. Performance and gain and phase margins of well-known pid tuning formulas. IEEE Trans. Control Systems Technology 4 (11), 473–477.

Ho, W. K., Hang, C., Zhou, J. H., 1995a. Performance and gain and phase margins of well-known pi tuning formulas. IEEE Trans. Control Systems Technology 3 (2), 245–248.

Ho, W. K., Hang, C. C., Cao, L. S., 1995b. Tuning of PID controllers based on gain and phase margin specification. Automatica 31, 497–502.

Ho, W. K., Lim, K. W., Hang, C. C., Ni, L. Y., 1999. Getting more phase margin and performance out of pid controllers. Automatica 35, 1579–1585.

Johnson, M., Moradi, M. H., 2005. PID Control: New Identification and Design Methods. Springer Verlag London.

Karimi, A., Kunze, M., Longchamp, R., 2006. Robust PID controller design by linear programming. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, June 14-16.

Karimi, A., Kunze, M., Longchamp, R., 2007. Robust controller design by linear programming with application to a double-axis positioning system. Control Engineering Practice 15, 197–208.

Keel, L. H., Battacharyya, S. P., 1997. Robust, fragil or optimal? IEEE Transaction on Automatic Control 42, 1098–1105.

Kristiansson, B., 2003. PID Controllers, Design and Evaluation. Ph.D. thesis, Control and Automation Laboratory, Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden.

Kristiansson, B., Lennartson, B., 2006. Robust Tuning of PI and PID Controllers. IEEE Control Systems Magazine 26(1), 69.

Leva, A., Colombo, A. M., 2004. On the IMC-based synthesis of the feedback block of isa PID regulators. Transactions of the Institute of Measurement and Control 26 (5), 417–440.

Malan, S. A., Milanese, M., Taragna, M., 1994. Robust tuning for PID controllers with multiple performance specifications. In Proceedings of the 33rd conference on decision and control, Lake Buena Vista, FL, USA.

Morari, M., Zafiriou, E., Economou, C. G., 1988. Robust Process Control. Springer-Verlag.

O’Dwyer, A., 2003. Handbook of PI and PID controller tuning rules. Imperial College Press, London, UK.

Panagopoulos, H., Aström, K. J., Hägglund, T., 2002. Design of PID controllers based on constrained optimisation. IEE Proceedings Control Theory and Applications, 149 (1), 32–40.

Persson, P., 1992. Towards autonomous PID control. Ph.D. thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Reynoso, G., Blasco, X., Sanchis., J., 2009. Diseño multiobjetivo de controladores pid para el benchmark de control 2008-9. RIAI - Revista Iberoamericana de Automática y Electrónica Industrial 6 (4), 93–103.

Rivera, D. E., Morari, M., Skogestad, S., 1986. Internal Model Control. 4. PID Controller Desing. Ind. Eng. Chem. Des. Dev. 25, 252–265.

Schei, T. S., 1994. Automatic tuning of pid controllers based on transfer function estimation. Automatica 30 (12), 1983–1989.

Shen, J.-C., 2002. New tuning method for PID controller. ISA Transactions 41, 473–484.

Shinskey, F. G., 1988. Process control systems: Application, design, and tuning. 3rd edn. McGraw-Hill, New York.

Shinskey, F. G., 1990. Putting controllers to the test. Chemical Engineering December, 96–106.

Silva, G. J., Datta, A., Bhattacharyya, S. P., 2003. On the Stability and Controller Robustness of Some Popular PID Tuning Rules. IEEE Transaction on Automatic Control 48(9), 1638–1641.

Silva, G. J., Datta, A., Bhattacharyya, S. P., 2005. PID Controllers for TimeDelay Systems. Birkhäuser Boston, Ney York, NY, USA.

Skogestad, S., 2003. Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control 13, 291–309.

Smith, C., Corripio, A. B., 1985. Principles and practice of automatic process control. Wiley, New York.

Tavakoli, S., Griffin, I., Fleming, P. J., 2005. Robust PI Controller for Load Disturbance Rejection and Setpoint Regulation. In: IEEE comference on Con trol Applications. Toronto, Canada, August 28-31.

Tavakoli, S., Griffin, I., Fleming, P. J., 2007. Multi-Objetive Optimization Approach to the PI Tuning Problem. In: IEEE Congress on Evolutionary Computing (CEC2007). pp. 3165–3171.

Toivonen, H. T., Totterman, S., 2006. Design of fixed-structure controllers with frequency-domain criteria: a multiobjective optimisation approach. IEE Proc. D, Control Theory and Applications 153 (1).

Toscano, R., 2005. A simple robust PI/PID controller design via numerical optimization approach. Journal of Process Control 15, 81–88.

Vidyasagar, M., 1985. Control System Synthesis. A factorization approach. MIT Press. Cambridge, Massachusetts.

Vilanova, R., 2008. Imc based robust PID design: Tuning guidelines and automatic tuning. Journal of Process Control 18, 61–70.

Vilanova, R., Alfaro, V. M., Arrieta, O., Pedret, C., 2010. Analysis of the claimed robustness for pi/pid robust tuning rules. In 18th IEEE Mediterranean Con- ference on Control and Automation (MED10), June 23- 25, Marrakech-Morocco.

Visioli, A., 2001. Optimal tuning of PID controllers for integral and unstable processes. IEE Proc. D, Control Theory and Applications 148 (2).

Visioli, A., 2006. Practical PID Control. Springer Verlag Advances in Industrial Control Series.

Zhuang, M., Atherton, D. P., 1993. Automatic tuning of optimum PID controllers. IEE Proc. D, Control Theory and Applications 140 (3), 216–224.

Ziegler, J. G., Nichols, N. B., 1942. Optimum settings for automatic controllers. Trans ASME 64, 759–768.

Abstract Views

1967
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Interactive Tool for Frequency Domain Tuning of PID Controllers
Juan Garrido, Mario Ruz, Fernando Morilla, Francisco Vázquez
Processes  vol: 6  num.: 10  primera página: 197  año: 2018  
doi: 10.3390/pr6100197



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912