Detección y Aislamiento de Fallas en Sistemas de Manufactura desde el Enfoque de Redes Complejas

J. Reyes-Luévano, E. Ruiz-Beltrán, L.A. Castañeda-Ramos, J.L. Orozco-Mora

Resumen

En este trabajo se presenta una metodología de modelado, detección y aislamiento de fallas en la parte operativa de los Sistemas de Manufactura Flexible (SMF), desde el enfoque de la teoría de Redes Complejas (RC). Como resultado, se propone un esquema en línea de detección y localización de fallas, basado en la simetría estructural de interrelación y la dinámica no distinguible del modelo de red compleja. Además, se implementa un segundo esquema que se basa en la detección de una falla, a través de la observación de un cambio abrupto (producido por la falla) en la derivada de i-ésimo orden de las variables de estado, de una red de sistemas Lineales e Invariantes en el tiempo (LIT). En este contexto, un sistema de monitoreo en línea y adquisición de señales es desarrollado para validar los esquemas antes descritos en una Línea de Proceso de Enlatado (LPE). Los resultados teóricos y experimentales validan los esquemas y confirman la existencia de fenómenos como auto regulación, simetría y organización, en los sistemas de manufactura.

Palabras clave

Detección; Aislamiento; Falla; Monitoreo en línea; Sistemas Complejos; Sistemas de Manufactura

Texto completo:

PDF

Referencias

Barabási, A-L, 2016. Network Science. Cambridge University Press. Cambridge U. K.

Chakkor, S., Baghouri, M., Hajraoui, A., 2014. Real time remote monitoring and fault detection in wind turbine. Int. Journal of Computer, Electrical, Automation, Control and Information Engineering 8(9), 1670-1677.

Chen, J., Patton, R. J., Zhang, H. Y., 1996. Design of unknown input observers and robust fault-detection filters. Int. J. Control 63(1), 85-105. https://doi.org/10.1080/00207179608921833

Cowan, N. J., Chastain, E. J., Vilhena, D. A., Freudenberg, J. S., Bergstrom, C. T., 2012. Nodal dynamic, not degree distribution, determine the structural controllability of complex networks. PLOS ONE 7(6), 1-5. https://doi.org/10.1371/journal.pone.0038398

Diao, Y., Passino, K. M., 2002. Intelligent fault-tolerant control using adaptive and learning methods. Control Eng. Practice 10, 801-817. https://doi.org/10.1016/S0967-0661(02)00032-1

Ding, S. X., 2008. Model-based Fault Diagnosis Techniques. Springer-Verlag. Alemania.

Frank, P. M., Wünnenberg, J., Tzafestas, S. G., Singh, M. G., Schmidt, F., 1987. Sensor fault detection via robust observers. Proc. Systems Fault Diagnostics, Reliab. Related Knowledge-Based Approaches 1, 147-160.

Gentil, S., Montmain, J., Combastel, C., 2004. Combining FDI and AI approaches within causal-model-based diagnosis. IEEE Trans. Syst., Man, Cybern. B., Cybern. 34(5), 2207-2221. https://doi.org/10.1109/TSMCB.2004.833335

Gertler, J., 1997. Fault detection and isolation using parity relations. Control Eng. Practice 5(5), 653-661. https://doi.org/10.1016/S0967-0661(97)00047-6

Hanlon, P. D., Maybeck, P. S., 2000. Characterization of Kalman filter residuals in the presence of mismodeling. IEEE Trans. Aerosp. Electron. Syst. 36(1), 114-131. https://doi.org/10.1109/7.826316

Hwang, I., Kim, S., Kim, Y., Seah, C. E., 2010. A survey of fault detection, isolation, and reconfiguration methods. IEEE Transaction on Control Systems Technology 18(3), 636-653. https://doi.org/10.1109/TCST.2009.2026285

Isermann, R., 1984. Process fault detection based on modeling and estimation methods: A survey. Automatica 20(4), 387-394. https://doi.org/10.1016/0005-1098(84)90098-0

Kuo, C. H., Huang, H. P., 2000. Failure modeling and process monitoring for flexible manufacturing systems using colored timed Petri nets. IEEE Transactions on Robotics and Automation 16(3), 301-312. https://doi.org/10.1109/70.850648

Lepuschitz, W., Jirkovsky, V., Kadera, P., Vrba, P., 2012. A multi-layer approach for failure detection in a manufacturing systems based on automation agents. 9th International Conference on Information Technology and New Generations 1, 1-6.

Nguyen, D. T., Duong, Q. B., Zamai, E., Shahzad, M. K., 2014. Dynamic structure identification of Bayesian network model for fault diagnosis of FMS. 40th Annual Conf. IEEE Industrial Electronic Society 1, 119-125.

Paoli, A., Sartini, M., Lafortune, S., 2011. Active fault tolerant control of discrete event systems using online diagnostics. Automatica 47(4), 639-649. https://doi.org/10.1016/j.automatica.2011.01.007

Park, J. H., Halevi, Y., 1994. A new interpretation of the fault-detection filter 2: the optimal detection filter. Int. J. Control 60(5), 767-787. https://doi.org/10.1080/00207179408921494

Patton, R. J., Chen, J., 1997. Observer –based fault detection and isolation: robustness and applications. Control Eng. Practice 5(5), 671-682. https://doi.org/10.1016/S0967-0661(97)00049-X

Rahimian, M. A., Preciado, V. M., 2015. Detection and isolation of failures in directed networks of LTI systems. IEEE Transaction on Control of Network Systems 2(2), 183-192. https://doi.org/10.1109/TCNS.2014.2378873

Rajaoarisoa, L., Sayed-Mouchaweh, M., 2017. Adaptive online fault diagnosis of manufacturing systems based on DEVS formalism. 20th World Congress of the International Federation of Automatic Control 1, 1-6.

Ramírez-Trevi-o, A., Ruiz-Beltrán, E., Rivera-Rangel, I., López-Mellado, E., 2007. Online fault diagnosis of discrete event systems. A Petri net-based approach. IEEE Trans. on Autom., Science and Engineering 4(1), 31-39. https://doi.org/10.1109/TASE.2006.872120

Ramírez-Trevi-o, A., Ruiz-Beltrán, E., Arámburo-Lizarraga, J., López-Mellado, E., 2012. Structural diagnosability of DES and design of reduced Petri net diagnosers. IEEE Transactions on Systems, Man, and Cybernetics A: Systems and Humans 42(2), 416-429. https://doi.org/10.1109/TSMCA.2011.2169950

Reyes-Luévano, J., Ruiz-Beltrán, E., Casta-eda-Ramos, L. A., Orozco-Mora, J. L., 2017. Structural analysis and fault detection on manufacturing systems: a complex network approach. IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC 2017) 1, 1-6. https://doi.org/10.1109/ROPEC.2017.8261590

Shao, J., Buldyrev, S. V., Havlin, S., Stanley, H. E., 2011. Cascade of failures in coupled network systems with multiple support-dependence relations. Physical Review E 83, 61-69. https://doi.org/10.1103/PhysRevE.83.036116

Shiryayev, A. N., 1978. Optical Stopping Rules. Springer-Verlag. New York.

Trutié-Carrero, Eduardo, Valdés-Santiago, Damian, León-Mecías, Ángela, Ramírez-Beltrán, Jorge, 2018. Detección y localización de ruptura súbita mediante transformada wavelet discreta y correlación cruzada. Revista Iberoamericana de Automática e Informática Industrial 15, 211-216. https://doi.org/10.4995/riai.2017.8738

Weaver, W., 1948. Science and complexity. American Scientist 36, 536-544.

Xianzhi, Z., Wen, S., 2010. Design and implementation of an embedded diagnosis systems for radar built-in test equipment. Int. Symposium Intelligence, Informatic, Processing and Trusted Computing 1, 173-176.

Zhang, G., Liu, J., Li, D., 2013. An integrated model of eliminating early failures for flexible manufacturing systems. 4th International Conference on Digital Manufacturing and Automation 1, 165-170

Abstract Views

4513
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912