Estudio comparativo de algoritmos de auto-ajuste de controladores PID. Resultados del Benchmark 2010-2011 del Grupo de Ingeniería de Control de CEA

J.A. Romero Pérez

Spain

Universidad Jaume I

Departamento de Ingeniería de Sistemas Industriales y Diseño

O. Arrieta

Spain

Universitat Autònoma de Barcelona

Universidad de Costa Rica

F. Padula

Italy

Università degli Studi di Brescia

Dipartimento di Ingegneria dell’Informazione

G. Reynoso Meza

Costa Rica

Universidad Politécnica de Valencia

Instituto de Automática e Informática Industrial

S. García Nieto

Spain

Universidad Polit ́ecnica de Valencia

Instituto de Automática e Informática Industrial

P. Balaguer

Spain

Universidad Jaume I

Departamento de Ingeniería de Sistemas Industriales y Diseño
|

Aceptado: 09-02-2018

|
DOI: https://doi.org/10.1016/j.riai.2012.02.009
Datos de financiación

Descargas

Palabras clave:

PID, auto-ajuste, rechazo de perturbaciones

Agencias de apoyo:

Gobierno Español (DPI2008-02133 y DPI2010-15230). Fundación Caixa Castellón-Bancaixa y la Universitat Jaume I (P1-1A2010-16).

Resumen:

En este artículo se comparan tres métodos de auto-ajuste de controladores PID que consideran diferentes tipos de experimentos para obtener información de la dinámica del proceso y distintos métodos de cálculo de los parámetros del controlador para minimizar el efecto de las perturbaciones. Los métodos fueron presentados en el concurso anual organizado por el grupo de Ingeniería de Control de CEA-IFAC del curso 2010-2011. Para la comparación se aplica la metodología de evaluación de algoritmos de autoajuste que tiene en cuenta tanto la fase de experimento como las prestaciones que se consiguen en la fase de control.
Ver más Ver menos

Citas:

Alfaro, V. M., 2006. Low-order models identification from process reaction curve. Ciencia y Tecnolog´ıa (Costa Rica) 24 (2), 197–216, (in Spanish).

Åstrom, K., H ¨ agglund, T., 2006. Advanced PID Control. ISA - The Instrumen- ¨ tation, Systems, and Automation Society.

Åstrom, K., Panagopoulos, H., H ¨ agglund, T., 1998. Design of PI controllers ¨ based on non-convex optimization. Automatica 34, 585–601.

Åstrom, K. J., H ¨ agglund, T., 1984. Automatic tuning of simple regulators with ¨ specifications on phase and amplitude margins. Automatica 20, 645–651.

Fleming, P., Purshouse, R., 2002. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice 10 (11), 1223 – 1241.

Greg Baker, W., January 2009. Is automated PID tuning dependable? Avilable on-line at http://www.controleng.com/index.php?id= 483&cHash=081010&tx_ttnews[tt_news]=12682.

Hang, C., Åstrom, K., Wang, Q., 2002. Relay feedback auto-tuning of process ¨ controllers-a tutorial review. Journal of Process Control 12 (1), 143 – 162.

Herreros, A., Baeyens, E., Peran, J. R., 2002. Design of pid-type controllers ´ using multiobjective genetic algorithms. ISA Transactions 41 (4), 457 – 472.

Iruthayarajan, M. W., Baskar, S., 2009. Evolutionary algorithms based design of multivariable pid controller. Expert Systems with applications 36 (5), 9159 – 9167.

Iruthayarajan, M. W., Baskar, S., 2010. Covariance matrix adaptation evolution strategy based design of centralized pid controller. Expert Systems with Applications 37 (8), 5775 – 5781.

Kim, T.-H., Maruta, I., Sugie, T., 2008. Robust PID controller tuning based on the constrained particle swarm optimization. Automatica 44 (4), 1104 – 1110.

Nobakhti, A., Wang, H., 2008. A simple self-adaptive differential evolution algorithm with application on the alstom gasifier. Applied soft computing 8, 350 – 370.

Padula, F., Visioli, A., 2010. Tuning of fractional PID controllers for integral processes. In: Proceedings of FDA’10. The 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain.

Padula, F., Visioli, A., 2011. Tuning rules for optimal PID and fractional-order PID controllers. Journal of Process Control 21 (1), 69–81.

Panagopoulos, H., Åstrom, K., H ¨ agglund, T., 2002. Design of PID controllers ¨ based on constrained optimisation. IEE Proceedings Control Theory & Applications 149 (1), 32–40.

Price, K. V., 1999. An introduction to differential evolution. McGraw-Hill Ltd., UK, Maidenhead, UK, England, pp. 79 – 108.

Reynoso-Meza, G., Blasco, X., Sanchis, J., García-Nieto, S., September 2011a. Auto-ajuste evolutivo de controladores PID. In: de Automatica, C. E. (Ed.), Memorias de las XXXII Jornadas de Automática.

Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2011b. Handling control engineering preferences: How to get the most of pi controllers. In: Proceedings of 16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA2011), September 5-9, Toulouse-France.

Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M., April 2011c. An empirical study on parameter selection for multiobjective optimization algorithms using differential evolution. In: Proceedings of IEEE Symposium on Differential Evolution (SDE2011).

Romero, J., Sanchis, R., 2011. Benchmark para la evaluación de algoritmos de auto-ajuste de controladores PID. Revista Iberoamericana de Automática de Informática Industrial 8, 112–117.

Romero, J.-A., Sanchis, R., Balaguer, P., 2011. PI and PID auto-tuning procedure based on simplified single parameter optimization. Journal of Process Control 21 (6), 840–851.

Sanchis, R., Romero, J., Balaguer, P., 2010. Tuning of PID controllers based on simplified single parameter optimization. International Journal of Control 83 (9), 1785–1798.

Storn, R., 2008. Differential Evolution Research - Trends and Open Questions. Springer-Verlag, pp. 1 – 31.

Storn, R., Price, K., 1997. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341 – 359.

Tan, K., Lee, T., Ferdous, R., 2005. Springer, Ch. Automatic PID Controller Tunning-The Nonparametric Approach, pp. 147–182.

Tavakoli, S., Griffin, I., Fleming, P. J., September 2007. Multi-objective optimization approach to the PI tuning problem. In: Proceedings of the IEEE congress on evolutionary computation (CEC2007). pp. 3165 – 3171.

Wang, Q.-G., Hang, C.-C., Zou, B., 1997. Low-order modeling from relay feedback. Industrial & Engineering Chemistry Research 36 (2), 375–381.

Xue, Y., Li, D., Gao, F., 2010. Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem. Control Engineering Practice 18 (1), 67 – 76.

Zhao, S.-Z., Iruthayarajan, M. W., Baskar, S., Suganthan, P., 2011. Multiobjective robust pid controller tuning using two lbests multi-objective particle swarm optimization. Information Sciences 181 (16), 3323–3335.

Ziegler, J., Nichols, N., 1942. Optimum Settings for Automatic Controllers. ASME Transactions, 759–768.

Ver más Ver menos