Técnicas GPGPU para acelerar el modelado de sistemas ultrasónicos
Enviado: 09-02-2018
|Aceptado: 09-02-2018
|Descargas
Palabras clave:
algoritmos paralelos, sistemas ultrasónicos, GPGPU
Agencias de apoyo:
Ministerio de Economía y Competitividad a través del proyecto DPI2010-19376 y la beca BES-2008-008675.
Resumen:
Citas:
Cea, 2003. Civa: Simulation software for non destructive testing.
Choi, J.-H. L. S.-W., 2000. A parametric study of ultrasonic beam profiles for a linear phased array transducer. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 47, 644–650.
E.Lindholm, J.Nickolls, S., Montrym, J., 2008. Nvidia tesla: A unified graphics and computing architecture. IEEE Micro 28 (2), 39–55.
J. Nickolls, I. Buck, M. G., Skadron, K., 2008. Scalable parallel programming with cuda. Queue 6 (2), 40–53.
Jensen, J., 1991. A model for the propagation and scattering of ultrasound in tissue. J. Acoust. Soc. Am. N. 89 (1), 182–190.
Kino, G. S., 1987. Acoustic Waves, devices, imaging and analog signal processing. Prentice-Hall.
Nvidia, 2012a. Gtx680 kepler white paper.
Nvidia, Enero 2012b. Guía de Programación de CUDA 4.1.
Pinar Crombie, e., 1997. Calculating the pulsed response of linear arrays accuracy versus computational efficiency. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 44, 997–1009.
Piwakowsky, B., Sbai, K., 1999. A new approach to calculate the field radiated from arbitrary structuredtransducer arrays. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 46 (2), 422–439.
Romero-Laorden, David, e., Mar. 2011. Field modelling acceleration on ultrasonic systems using graphic hardware. Computer Physics Communications 182 (3), 590–599. DOI: 10.1016/j.cpc.2010.10.032
Smith, S. W., 1998. Digital Signal Processing. Analog Devices.
Steinberg, B. D., 1976. Principles of Aperture and Array System Design. WileyInterscience.