Aplicación de técnicas de control robusto QFT a sistemas navales

R. Muñoz Mansilla, J. Aranda, J.M. Díaz, D. Chaos

Resumen

En este trabajo se realiza un análisis de diferentes metodologías de control robusto basadas en la técnica denominada Teoría de la Realimentación Cuantitativa, QFT (Quantitative Feedback Theory) para resolver diferentes problemáticas que surgen en los sistemas de control marinos. En concreto se estudia el posicionamiento dinámico de una plataforma marina fondeada, la estabilización de un buque de alta velocidad, y el seguimiento de referencia para un aerodeslizador. Estos problemas de control presentan grandes retos de diseño, dado que son sistemas no lineales, multivariables, subactuados y con grandes perturbaciones. Los diferentes tipos de diseño QFT obtenidos consiguen una implementación robusta con prevención de acoplamientos, reducción de perturbaciones ambientales, respuestas rápidas y precisión en el seguimiento, que demuestran finalmente que es una alternativa práctica y eficaz para la solución de problemas de control en vehículos navales.

Palabras clave

Control robusto; sistema no lineal; vehículo subactuado; sistema naval; diseño QFT

Texto completo:

PDF

Referencias

Aguiar A.P, Hespanha J.P., 2003. Position tracking of underactuated vehicles. Proc. of the 2003 American Control Conference. Denver. CO. USA.

Amerongen van, J. and Klugt van der, P.G.M., Nauta Lemke van, H.R., 1990. Rudder roll stabilization for ships. Automatica. 26(4), 679-690.

Allison, J.L., Forstell, B.G., Lavis, D.R. Purnell, J., 2004. The Influence of New Technology on the Design and Manufacture of High Speed Craft. RINA International Conference on High Speed Craft.

Andry, A. N., Shapiro E.Y., Chung, J.C., 1983. Eigenstructure assignment for linear systems, IEEE Transactions on Aerospace and Electronic Systems, 5, 711-729.

Aranda, J., Díaz, J.M., Muñoz- Mansilla, R., 2005. QFT Control of a coupled system applied to a fast ferry, Proc. of 16th IFAC World Congress. Prague.

Baños, A. 2007. Nonlinear quantitative feedback theory. Int. J. of Robust and Nonlinear Control, vol. 17, pp. 181-202.

Baños, A., Horowitz, I.M., 2000. QFT design of multi-loop nonlinear control systems, Int. Journal of Robust and Nonlinear Control, 10(15), 1263-1277.

Baños A., Horowitz, I.M., 2004. Nonlinear quantitative stability, Int. Journal of Robust and Nonlinear Control, 14, 289-306.

Baños, A., Yaniv, O., Montoya, Y., 2003. Non-linear QFT synthesis by local linearization. Int. Journal of Control, 79(5), 429-436.

Basso, M., Angeli, A., Genesio, R., Galanti, M., 1993. An automatic procedure for the QFT control design of a mirror interferometer. Proc. of the 2nd European Control Conference. Groningen.

Bazán National Company, 1995. Sea behavior tests of the Turbo Ferry TF120. OTI-2086-CM-1.

Borguesani, C., Chait Y., Yaniv, O., 1995. Quantitave Feedback Theory Toolbox-for use with Matlab. The Mathworks Inc. Natick. M.A.

Burns, R., 1995. The use of artificial neural networks for the intelligent optimal control of surface shop. IEEE J. Ocean Eng. 20(1), 65-72.

Chen, W., Balance, D.J., 2001. QFT design for uncertain non-minimum phase and unstable plants visited. Int. Journal of Control, 4(9), 957-965.

Cirre, C., Moreno, J.C., Berenguel, M., Guzmán, J.L., 2010. Robust control of solar plants with distributed collectors. Proc. of the 9th. International Symposium on Dynamics and Control of Process Systems, Leuven, Belgium, July 5-7.

Comasòlivas, R., Escobet, T., Quevedo, J., 2004. Aplicación de la técnica de la QFT para el control activo de las perturbaciones mecánicas en un interferómetro óptico. Revista Iberoamericana de Sistemas, Cibernética e Informática, 1(1),1-6.

Cruz de la J.M, Aranda, J., Girón-Sierra, J.M., Velasco, F., Esteban, S., Díaz, J.M., de Andrés-Toro, B., 2004, Improving the comfort of a fast ferry, smoothing a ship’s vertical motion with the control of flaps and T-foil, IEEE Control System Magazine, 24(2), 47-60.

Cruz de la J.M., Ruipérez, P. Aranda, J, 1997. An Eigenstructure Assignment Approach (2). Robust Flight Control, a design challenge. Ed. J.F. Magni, S. Bennani, J. Terlouw. LNCIS n. 224. Springer.

Díaz J.M., Dormido S., Aranda, J. 2005. Interactive computed-aided control design using quantitative feedback theory: the problem of vertical movement stabilization on a high-speed craft. Int. Journal of Control. 78(11), 813-825.

Djouani, K., Hamam, Y., 1995. Mimimum time-energy trajectory planning for automatic ship berthing. IEEE Journal of Ocean Engineering, 20(1), 4-11.

Egaña, I., Sabalza, X., 2006. Diseño de un controlador basado en QFT para el amortiguamiento del chatter en rectificadoras sin centros. Revista Iberoamericana de Automática e Informática Industrial. RIAI, 3(2), 90-98.

Fossen, T.I., 1994. Guidance and Control of Ocean Vehicles. Chichester: John Wiley & Sons Ltd.

Fossen, T.I., Blanke, M., 2000. Nonlinear output feedback control of underwater vehicle propellers using feedback from estimated axial flow velocity. IEEE Journal of Ocean Engineering, 25, 2, 241-255.

García-Sanz, M., Vital, P., Barreras, M., Huarte, A., 2001. Interactive tool for easy robust control design. IFAC Int. Workshop on internet based control educations.83-88. Madrid. Spain.

García Sanz, M., 2005. Control robusto cuantitativo QFT: historia de una idea. Revista Iberoamericana de Automática e Informática Industrial. RIAI, 2(3), 25-38.

García Sanz, M., Torres, E., 2004. Control y experimentación del aerogenerador síncrono multipolar de velocidad variable TWT1650. Revista Iberoamericana de Automática e Informática Industrial. RIAI, 1(3), 53-62.

Horowitz, I. M., 1963. Synthesis of feedback systems, Acad. Press. N.Y.

Horowitz, I.M., 1975. A synthesis theory for linear time-varying feedback systems with plant uncertainty, IEEE Transactions on Automatic Control, 1975, 20(4), 454-464

Horowitz, I.M.,1976. Synthesis of feedback systems with nonlinear timevarying uncertain plants to satisfy quantitative performance specifications, Proc. of the IEEE, 64, 123-130.

Horowitz, I.M.,2001. Survey of Quantitative Feedback Theory (QFT). Int. Journal of Robust and Nonlinear Control, 11(10), 887-921.

Horowitz I.M., Sidi, 1972. Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerances. Int. Journal of Control, 16(2), 287-309.

Horowitz, I.M., Sidi, 1978, Optimus Synthesis of non-minimum phase feedback system with plant uncertainty, Int. Journal of Control, 27, 361- 386.

Houpis, C. H., Rassmussen, S.J., García-Sanz, M., 2006. Quantitative Feedback Theory: fundamentals and applications, 2nd Edition, CRC Taylor & Francis: Boca Ralen.

Hu, S.S., Yang, P.H., Juang, J.Y, Chang, B.C., 2003. Robust nonlinear ship course-keeping control by H I/O linearization and μ-synthesis. Int. Journal of Robust and Nonlinear Control, 13, 55-70.

Juang, J.Y., Chang, B.C, 1999. Robust control theory applied to ship maneuvering. Proc. IEEE Conference on Decision and Control, 2186- 2191.

Kajiwara, H., Koterayama, W., Nakamura, M. 1995. LMI-based design of dynamic positioning control laws for a moored floating platform model. Proc. 14th SICE Kyushu Branch.Conference, 181-184.

Karpenko, M., Sepehri, N., 2006. QFT Synthesis of a Position Controller for a Pneumatic Actuator in the presence of Worst-Case persistent disturbances. Proc.of the American Control Conference, 3158-3163.

Katebi, M.R., Grimble, M.J., Zhang, Y., 1997. Hf robust control design for dynamic ship positioning. IEE Proc. on Control Theory and Applications, 144(2), 110-120.

Katebi, M.R., Yamamoto, I., Matsuura, M., Grimble, M.J., 2001. Robust dynamic ship positioning control system design and applications. Int. Journal of Robust and Nonlinear Control, 11, 1257-1284.

Kerr, M., Jayasuriya, S., 2005. An Improved Non-Sequential MIMO QFT Design Method. American Control Conference, 2005. Portland, USA.

McClure M.A., Paschall, R.N., 1992. Applying Variations of the Quantitative Feedback Technique to Unstable, Non-Minimum Phase aircraft dynamics models. Proc.of the IEEE National Aerospace and Electronic Conference, NAECON, 334-341.

Moreno, J.C., Baños, A., y Berenguel, M., 2006, Improvements on the Computation of Boundaries in QFT, Int. Journal of Robust and Nonlinear Control, 16, 575–597.

Muñoz-Mansilla, R., Aranda, J., Díaz, J.M., Cruz, J.M., 2009. A parametric model identification of high-speed craft dynamics. Ocean Engineering, 6, 1025-1038.

Niksefat, N., Sepehri, N., Wu, Q., 2007. Design and experimental evaluation of a QFT contact task controller for electro-hydraulic actuators. Int. Journal of Robust and NonlinearControl, 17, 225-250.

Ryoo, J.R., Doh, T.Y, Chung, M.J., 2002. A QFT design of disturbance observer for the track-following control system of an optical disk drive. Advanced Motion control, 7th Intern. Workshop on.

Strand, J.P., Sorensen, A.J., 2000. Marine Positioning systems. Ocean Eng.Handbook. (El-Hawary, Ed.), 3, 163-176. CRC Press, USA.

Sobel, K.M., Shapiro, E.Y., 1985. Eigenstructure Assignment: a tutorial. Proc. American Control Conference, Boston, 456-467.

Tanaka, K., Iwasaki, M., Wang, H., 2001. Switching Control of and R/C Hovercraft. Stabilization and Smooth Switching. IEEE Transactions on System, Man, and Cybernetics, 31(6), 853-863.

Ting-Yun, J., 1996. Control of nonholonomic systems. WS. Levine, Ed, The Control Handbook, USA, CRC Press & IEEE Press, 1359-1368.

Wu, S.F., Grimble, M.J., Breslin, S.G., 1998. Introduction to Quantitative Feedback Theory for lateral robust flight control systems design. Control Engineering Practice, 6, 805-828.

Wu, S.F., Wei, W. Grimble, M.J, 2004. Robust MIMO control-system design using eigenstructure assignment and QFT. IEE Proc. Control Theory Applications., 151(2), 198-209.

Yamamoto, I., 2001. Robust and non-linear control of marine system. Int. Journal of Robust and Nonlinear Control, 11, 1285-1341.

Yaniv, O., 1991. Robust design of MIMO feedback systems having an uncertain non-linear plant, Int. Journal of Control, 53(6), 1283-1294.

Yaniv, O., 1999. Quantitative Feedback design of linear and nonlinear control systems, Kluwer Acad. Publishers: Norwell, Massachusetts.

Yaniv, O., Horowitz, I.M., 1986. A quantitative design method for MIMO linear feedback systems having uncertain plant. Int. Journal of Control, 43(2), 401-421.

Zeidler, E., 1986. Nonlinear Functional Analysis and its Applications, Springer-Verlag . N.Y

Abstract Views

558
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912