Construcción automática de ortofotomapas: una aproximación fotométrica

R. Prados, R. García, L. Neumann


La construcción de mosaicos de imágenes permite obtener representaciones de grandes dimensiones y resolución de una misma escena. Son frecuentes hoy día las cámaras fotográficas que incorporan un software destinado a su construcción o aplicaciones en línea como Google Maps que permiten visualizar mapas resultantes de la construcción de foto-mosaicos. Habitualmente los mosaicos panorámicos son generados a partir de imágenes adquiridas mediante una cámara que únicamente efectúa movimientos de rotación alrededor de un punto fijo. Cuando las condiciones de adquisición varían y la cámara también se traslada, surgen fenómenos, como el de paralaje, que dificultan la unión no perceptible de las imágenes. A ello hay que añadir las diferencias en apariencia que varias fotografías adyacentes pueden presentar debido a mecanismos automáticos de las cámaras, como el de control de exposición. En el presente trabajo se describe un procedimiento completo para la construcción automática de mosaicos con apariencia totalmente continua y consistente, en los que las uniones de las distintas imágenes que lo conforman no son visibles. Las imágenes son registradas mediante métodos que garantizan consistencia geométrica, y unidas utilizando técnicas de fusión (o blending), con el objetivo de asegurar una transición no visible entre imágenes y una apariencia global coherente en todo el mosaico. El procedimiento descrito es aplicado sobre una secuencia con el fin de evaluar su utilización en el contexto de las imágenes aéreas de grandes dimensiones.

Palabras clave

Procesamiento de imagen; realzado de imagen; emparejamiento de imágenes; registro de imágenes; métodos de gradiente

Texto completo:



Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M., August 2004. Interactive digital photomontage. In: Proc. SIGGRAPH04.

Arévalo, V., González, J., 2008. An Experimental Evaluation of Non-Rigid Registration Techniques on QuickBird Satellite Imagery. International Journal of Remote Sensing 29 (2), 513–527.

Bay, H., Tuytelaars, T., Van Gool, L. J., 2006. SURF: Speeded Up Robust Features. In: European Conference on Computer Vision. pp. 404–417.

Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., July 2000. Image inpainting. In: Proceedings of SIGGRAPH. New Orleans, USA. pp. 417–424.

Botterill, T., Mills, S., Green, R., 2009. New conditional sampling strategies for speeded-up RANSAC. In: BMVC.

Botterill, T., Mills, S., Green, R., November 2010. Real-time Aerial Image Mosaicing. In: Proceedings of Image and Vision Computing New Zealand. Queenstown, NZ, pp. 1–6.

Burt, P., Adelson, E., 1983. A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2 (4), 217–236.

Dibos, F., Koepfler, G., December 1999. Global total variation minimization. SIAM J. Numer. Anal. 37, 646–664.

Dijkstra, E. W., 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271.

Ding, M., Lyngbaek, K., Zakhor, A., June 2008. Automatic registration of aerial imagery with untextured 3d lidar models. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. pp. 1 –8.

Elibol, A., Garcia, R., Delaunoy, O., Gracias, N., 2008. A new global alignment method for feature based image mosaicing. In: ISVC ’08: Proceedings of the 4th International Symposium on Advances in Visual Computing, Part II. Springer-Verlag, Berlin, Heidelberg, pp. 257–266.

Elibol, A., Gracias, N., Garcia, R., Sep. 2010. Augmented state-extended kalman filter combined framework for topology estimation in large-area underwater mapping. J. Field Robot. 27 (5), 656–674. URL: DOI: 10.1002/rob.v27:5

Escartín, J., García, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D. J., Humphris, S. E., Renard, J., December 2008. Globally aligned photomosaic of the lucky strike hydrothermal vent field (mid-atlantic ridge, 37deg18.5’n): Release of georeferenced data, mosaic construction, and viewing software. Geochemistry, Geophysics, Geosystems 9, Q12009.

Fattal, R., Lischinski, D., Werman, M., 2002. Gradient domain high dynamic range compression. ACM Trans. Graph. 21 (3), 249–256.

Faugeras, O., Luong, Q.-T., Maybank, S., May 1992. Camera self calibration: theory and experiments. In: Proc. of the 2nd. European Conference on Computer Vision. Santa Margherita, Italy.

Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., Garcia, R., 2007. Large-area photo-mosaics using global alignment and navigation data. In: MTS/IEEE OCEANS.

Fischler, M., Bolles, R., 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 6 (24), 381–395.

Girosi, F., Verri, A., Torre, V., 1989. Constraints for the computation of optical flow. In: Proc. of the IEEE Workshop on Visual Motion. pp. 116–124.

González, J., Ambrosio, G., Arévalo, V., Nov. 2001. Automatic Urban Change Detection from the IRS-1D PAN. In: IEEE-ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas. Rome, Italy, pp. 320–323.

Harris, C., Stephens, M., August 1988. A combined corner and edge detector. In: Proceedings Alvey Conference. Manchester, UK, pp. 189–192.

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision, 2nd edition. Cambridge University Press.

Horn, B., Shunck, B., 1981. Determining optical flow. Artificial Intelligence 17, 185–203.

Kanatani, K., Ohta, N., September 1999. Accuracy bounds and optimal computation of homography for image mosaicing applications. In: Proc. of the Seventh International Conference on Computer Vision. Vol. 1. IEEE, pp. 73– 78.

Kazhdan, M., Hoppe, H., 2008. Streaming multigrid for gradient-domain operations on large images. ACM Trans. Graph. 27 (3), 1–10.

Kumar, R., Anandan, P., Irani, M., Bergen, J., Hanna, K., June 1995. Representation of scenes from collections of images. In: Proc. of the IEEE Computer Society Workshop on Visual Scenes Representation. Cambridge, MA.

Kumar, R., Sawhney, H., Asmuth, J., Pope, A., Hsu, S., August 1998. Registration of video to geo-referenced imagery. In: Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on. Vol. 2. pp. 1393 –1400 vol.2.

Lear, A., sep/oct 1997. Digital orthophotography: mapping with pictures. Computer Graphics and Applications, IEEE 17 (5), 12 –14.

Levin, A., Zomet, A., Peleg, S., Weiss, Y., May 2004. Seamless image stitching in the gradient domain. In: Proc. of the European Conference on Computer Vision (ECCV04). Prague, Czech Republic.

Lindeberg, T., 1993. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. International Journal of Computer Vision 11, 283–318, 10.1007/BF01469346.

Lowe, D., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60 (2), 91–110.

Lowe, D. G., 1999. Object recognition from local scale-invariant features. In: ICCV ’99: Proceedings of the International Conference on Computer Vision-Volume 2. IEEE Computer Society, Washington, DC, USA, p. 1150.

Milgram, D., 1975. Computer methods for creating photomosaics. IEEE Transactions on Computers 24 (11), 1113–1119.

Milgram, D., November 1977. Adaptive techniques for photomosaicking. IEEE Transactions on Computers C-26 (11), 1175–1180.

Mills, A., Dudek, G., 2009. Image stitching with dynamic elements. Image and Vision Computing 27 (10), 1593–1602.

Morse, B. S., Engh, C. H., Goodrich, M. A., 2010. Uav video coverage quality maps and prioritized indexing for wilderness search and rescue. In: Proceeding of the 5th ACM/IEEE international conference on Human-robot interaction. HRI ’10. ACM, New York, NY, USA, pp. 227–234.

Naydenova, V., Jelev, G., June 2009. Forest dynamics study using aerial photos and satellite images with very high spatial resolution. In: Recent Advances in Space Technologies, 2009. RAST ’09. 4th International Conference on. pp. 344 –348.

Neumann, L., Matkovic, K., Purgathofer, W., 1998. Automatic exposure in computer graphics based on the minimum information loss principle. Computer Graphics International Conference 0, 666–667.

Nicosevici, T., Garcia, R., October 2009. On-line visual vocabularies for robot navigation and mapping. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. pp. 205 –212.

Nicosevici, T., Gracias, N., Negahdaripour, S., Garcia, R., 2009. Efficient threedimensional scene modeling and mosaicing. J. Field Robot. 26 (10), 759– 788.

Osher, S., Rudin, L., Aug. 1990. Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27 (4), 919–940.

Peleg, S., 1981. Elimination of seams from photomosaics. In: Pattern Recognition and Image Processing. Vol. 16. pp. 90–94.

Pérez, P., Gangnet, M., Blake, A., 2003. Poisson image editing. ACM Transactions on Graphics (SIGGRAPH’03) 22 (3), 313–318.

Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P., sep./oct. 2001. Color transfer between images. Computer Graphics and Applications, IEEE 21 (5), 34 –41.

Solberg, R., Solberg, A., Koren, H., Aas, K., May 1996. The suitability of future high-resolution satellite imagery for forest inventory. In: Geoscience and Remote Sensing Symposium, 1996. IGARSS ’96. ’Remote Sensing for a Sustainable Future.’, International. Vol. 4. pp. 2307 –2309 vol.4.

Tegolo, D., Valenti, C., 2001. A naive approach to compose aerial images in a mosaic fashion. Image Analysis and Processing, International Conference on 0, 0512.

Tsai, R., 1986. An efficient and accurate camera calibration technique for 3D machine vision. In: IEEE International Conference on Computer Vision and Pattern Recognition - CVPR86. Miami Beach, Florida.

Wehn, H., Goldstein, N., Ameri, B., Moshkovitz, A., Zwick, H., june 2002. Frequent-image-frames enhanced digital ortho-rectified mapping (fifedom) airborne mapping system. In: Geoscience and Remote Sensing Symposium, 2002. IGARSS ’02. 2002 IEEE International. Vol. 2. pp. 1296 – 1298 vol.2.

Wen, H., Zhou, J., dec. 2008. An improved algorithm for image mosaic. In: Information Science and Engineering, 2008. ISISE ’08. International Symposium on. Vol. 1. pp. 497 –500.

Zebedin, L., Klaus, A., Gruber-Geymayer, B., Karner, K., 2006. Towards 3d map generation from digital aerial images. ISPRS Journal of Photogrammetry and Remote Sensing 60 (6), 413 – 427, digital Aerial Cameras.

Zhao, W., 2006. Flexible image blending for image mosaicing with reduced artifacts. International Journal of Pattern Recognition and Artificial Intelligence 20 (4), 609–628.

Zhu, S., Yang, X., 2000. The seamline removing in the generation of orthophoto maps. In: International Archives of Photogrammetry and Remote Sensing. Vol. 33. International Society for Photogrammetry and Remote Sensing, Amsterdam, The Netherlands, pp. 1247–1251.

Zitova, B., Flusser, J., 2003. Image Registration Methods: A Survey. Image and ´ Vision Computing 21 (11), 977–1000.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Muestreo adaptativo aplicado a la robótica: Revisión del estado de la técnica
Ignacio Pastor, João Valente
Revista Iberoamericana de Automática e Informática Industrial RIAI  vol: 14  num.: 2  primera página: 123  año: 2017  
doi: 10.1016/j.riai.2016.09.009

Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912