Implementación basada en el middleware OROCOS de controladores dinámicos pasivos para un robot paralelo

Marina Vallés, José I. Cazalilla, Ángel Valera, Vicente Mata, Álvaro Page

Resumen

La complejidad actual de los sistemas robotizados y de las aplicaciones que éstos deben realizar requiere que los robots dispongan de un control automático que permita la ejecución de las distintas tareas que forman parte del algoritmo de control y que tenga en cuenta cuestiones relacionadas por ejemplo con la periodicidad, el modo de ejecución, el hardware que se utilizará, etc. Para el desarrollo de este tipo de aplicaciones de control en los últimos añ os se tiende a la programación basada en componentes puesto que ésta permite obtener código reusable. Así mismo también se está incrementando la utilización de middlewares que permiten la abstracción de los sistemas operativos, el soporte de tiempo real y la infraestructura de comunicaciones. En el presente artículo se propone la utilización de un middleware orientado especialmente a la robótica: OROCOS. Así se describe cómo haciendo uso de una de sus librerías, Orocos Toolchain, se han desarrollado una serie de componentes correspondientes a distintos algoritmos para el control dinámico de robots, aplicándose a un robot paralelo de 3 grados de libertad (DOF).

Palabras clave

tiempo-real; middleware; implementación basada en componentes; manipuladores paralelos

Texto completo:

PDF

Referencias

Abdellatif, H., Heimann, B., 2010. Advanced model-based control of a 6-dof hexapod robot: A case study. IEEE/ASME Transactions on Mechatronics 15, 269–279.

Alonso, D., J.A. Pastor, and P. Sánchez, a. B. l., Vicente-Chicote, C., 2011. Generación automática de software para sistemas de tiempo real: Un enfoque basado en componentes, modelos y frameworks. Revista Iberoamericana de Automática e Informática Industrial 9(2), 170–181.

Bruyninckx, H., 2001. Open robot control software: the orocos project. In: In IEEE International Conference on Robotics and Automation (ICRA’01), vol. 3, pp. 2523-2528.

Campbell, A., Coulson, G., Kounavis, M., 1999. Managing complexity: Middleware explained. IEEE Computer Society.

Chablat, D., Wenger, P., 2003. Architecture optimization of a 3-dof translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation 19, 403–410.

Clavel, R., 1988. Delta, a fast robot with parallel geometry. In: Proceedings of 18th International Symposium on Industrial Robot.

Clements, P., Shaw, M., july-aug. 2009. ”the golden age of software architecturerevisited. Software, IEEE 26 (4), 70 –72. DOI: 10.1109/MS.2009.83

Collett, I. T., MacDonald, B. A., Gerkey, B. P., 2005. Player 2.0: Toward a practical robot programming framework. In: In Australasian Conference on Robotics and Automation (ACRA’05).

Cote, C., Letourneau, D., Michaud, F., Brosseau, Y., 2006. Robotic software integration using marie. International Journal of Advanced Robotic Systems 3.

Díaz-Rodríguez, M., Mata, V., Farhat, N., Provenzano, S., 2008. Identifiability of the dynamic parameters of a class of parallel robots in the presence of measurement noise and modeling discrepancy. Mechanics Based Design of Structures and Machines 36, 478–498.

Díaz-Rodríguez, M., Mata, V., Valera, A., Page, A., 2010. A methodology for dynamic parameters identification of 3-dof parallel robots in terms of relevant parameters. Mechanism and Machine Theory 45, 1337–1356.

Fu, K., Mills, J. K., 2007. Robust control design for a planar parallel robot. International Journal of Robotics & Automation 22, 139–147.

Gerkey, B., Vaughan, R., Howard, A., 2003. The player/stage project: Tools for multi-robot and distributed sensor systems. In: In Proceedings of the 11th International Conference on Advanced Robotics.

Gou, H. B., Liu, Y. G., Liu, G. R., Li, H. R., 2009. Cascade control of a hydraulically driven 6-dof parallel robot manipulator based on a sliding mode. Control Engineering Practice 16, 105–168.

Gough, V., Whitehall, S., 1962. Universal tire test machine. In: Proceedings of 9th International Technical Congress FISITA.

Grotjahn, M., Heimann, B., Abdellatif, H., 2004. Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody System Dynamics 11, 273–294.

Jalón, J.-G., Bayo, E., 1994. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time challenge. Springer-Verlag, New-York.

Kim, D., Kang, J. Y., Lee, K. I., 1999. Nonlinear robust control design for a 6-dof parallel robot. KSME International Journal 13, 557–568.

Lee, K., Arjunan, S., 1991. A three-degrees-of-freedom micromotion inparallel actuated manipulator. IEEE Transactions on Robotics and Automation 7, 634–641.

Li, Y., Xu, Q., 2007. Design and development of a medical parallel robot for cardiopulmonary resuscitation. IEEE/ASME Tr 12, 265–273.

Merlet, J.-P., 2000. Parallel Robots. Kluwer, London, U.K.

Ortega, R., Spong, M., 1989. Adaptive motion control of rigid robots: a tutorial. Automatica 25, 877–888.

Paden, B., Panja, R., 1988. Globally asymptotically stable pd+ controller for robot manipulators. Int. J. on Control 47, 1697–1712.

Pierrot, F., Nabat, V., Company, O., Krut, S., Poignet, P., 2009. Optimal design of a 4-dof parallel manipulator: From academia to industry. IEEE Transactions on Robotics 25, 213–224.

Stan, S. D., Balan, R., Maties, V., Rad, C., 2009. Kinematics and fuzzy control of isoglde3 medical parallel robot. Mechanika 1, 62–66.

Steward, 1965. A platform with 6 degree of freedom. In: Proceedings of the Institution of mechanical engineers.

Tang, J., Mu, L., Kwong, C., Luo, X., 2011. An optimization model for software component selection under multiple applications development. European Journal of Operational Research 212 (2), 301 – 311. DOI: 10.1016/j.ejor.2011.01.045

Theodor, I., 2003. Standardization of terminology. Mechanism and Machine Theory 38, 597–1111.

Tsai, L. W., 1999. Robot Analysis: The Mechanics of Serial and Parallel Manipulator. Wiley Interscience, Canada.

Utz, H., Sablatnög, S., Enderle, S., Kraetzchmar, G., 2002. Miro - middleware for mobile robot applications. IEEE Transactions on Robotics an 18, 493– 497.

Abstract Views

686
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Aproximación Basada en UML para el Diseño y Codificación Automática de Plataformas Robóticas Manipuladoras
Elisabet Estévez, Alejandro Sánchez García, Javier Gámez García, Juan Gómez Ortega
Revista Iberoamericana de Automática e Informática Industrial RIAI  vol: 14  num.: 1  primera página: 82  año: 2017  
doi: 10.1016/j.riai.2016.11.001



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912