Evaluación de algoritmos para la estimación del Round-Trip Delay Time y una propuesta de mejora

Daniel Docmac M., Eduardo I. Silva, Agustín J. González

Resumen

En la literatura se han propuesto diversos algoritmos para la estimación del RTT (por sus siglas en inglés: Round-Trip Delay Time). Éstos buscan obtener un mejor desempeñ o que el del algoritmo de estimación adoptado por el estándar TCP (por sus siglas en inglés: Transfer Control Protocol), propuesto en los añ os ochenta. En general, los resultados de la evaluación del desempeñ o de las distintas alternativas en la literatura, se presentan en forma gráfica, considerando un único escenario de conexión o a través de simulación. No se cuenta con métricas de evaluación que permitan determinar, cuantitativamente, el rendimiento de los distintos algoritmos o realizar una comparación entre ellos. Lo anterior motiva el presente trabajo en que se estudian e implementan diversos algoritmos de estimación del RTT en la literatura, se define un marco experimental de prueba y se realizan comparaciones usando una métrica y escenarios comunes. Como segunda contribución, se propone un algoritmo adaptativo de estimación del RTT, capaz de reaccionar rápido frente a cambios repentinos en dicha señ al y, a la vez, menos sensible a ruidos transitorios que alternativas en la literatura.

Palabras clave

ACUSUM; estimación; filtros adaptativos; filtro de Kalman; PEM; redes de comunicación; Round-Trip Delay Time (RTT); TCP

Texto completo:

PDF

Referencias

Anderson, B. D. O., Moore, J. B., 1979. Optimal filtering. Prentice-Hall.

Arce, G., Paredes, J., Mar. 2000. Recursive weighted median filters admitting negative weights and their optimization. Signal Processing, IEEE Transactions on 48 (3), 768 –779. DOI: 10.1109/78.824671

Balakrishnan, H., Padmanabhan, V., Seshan, S., Stemm, M., Katz, R., Apr. 1998. TCP behavior of a busy Internet server: analysis and improvements. In: INFOCOM ’98. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. Vol. 1. pp. 252 –262 vol.1. DOI: 10.1109/INFCOM.1998.659661

Basseville, M., Nikiforov, I., 1993. Detection of Abrupt Changes: Theory and Applications. Prentice-Hall.

Farahmand, S., Angelosante, D., Giannakis, G. B., nov. 2010. Doubly robust Kalman smoothing by controlling outlier sparsity. In: Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on. pp. 691 –695. DOI: 10.1109/ACSSC.2010.5757650

Goodwin, G. C., Sin, K. S., 1984. Adaptive filtering prediction and control. Prentice Hall, Englewood Cliffs.

Gustafsson, F., 2000. Adaptive filtering and change detection. John Wiley & Sons, Ltd.

Haeri, M., A.H.M.Rad, 2004. TCP retransmission timer adjustment mechanism using model-based RTT predictor. In: Control Conference, 2004. 5th Asian. Vol. 1. pp. 686 – 693 Vol.1. DOI: 10.1109/ASCC.2004.184838

hping, 2004. hping3. URL: http://www.hping.org/

Hyndman, R. J., Koehler, A. B., 2006. Another look at measures of forecast accuracy. International Journal of Forecasting 22, 679–688.

Jacobson, V., 1988. Congestion avoidance and control. In: Symposium proceedings on Communications architectures and protocols. SIGCOMM ’88. ACM, New York, NY, USA, pp. 314–329. DOI: 10.1145/52324.52356

Jacobsson, K., Hjalmarsson, H., Moller, N., Johansson, K. H., 2004. ¨ Round-Trip Time estimation in communication networks using adaptive Kalman filtering. In: Reglermöte.

Kurose, J. F., Ross, K. W., 2010. Computer networking - a top-down approach featuring the Internet, 3rd Edition. Addison-Wesley.

Lei, Y., Zhu, R., Wang, W., 2006. A survey on TCP protocol and RTT estimation. In: Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on. Vol. 1. pp. 4410 –4414. DOI: 10.1109/WCICA.2006.1713211

Li, G., Zhao, N., Liu, C., 2009. Round Trip Time estimation based on adaptive filtering. In: Information Science and Engineering (ICISE), 2009 1st International Conference on. pp. 1842 –1846. DOI: 10.1109/ICISE.2009.1040

Li, Q., May 2000. Delay characterization and performance control of wide-area networks. Ph.D. thesis, Univ. Of Delaware, Newark. URL: http://www.ece.udel.edu/ qli

Lorden, G., 1971. Procedures for reacting to a change in distribution. Annals of Mathematical Statistics 42, 1897–1908.

Ludwig, R., Sklower, K., 2000. The Eifel retransmission timer. Computer Communication Review 30 (3), 17–27.

Ma, L., Arce, G., Barner, K., 2004. TCP retransmission timeout algorithm using weighted medians. Signal Processing Letters, IEEE 11 (6), 569 – 572. DOI: 10.1109/LSP.2004.827957

McCreary, S., Claffy, K., 2000. Trends in wide area IP traffic patterns - a view from Ames Internet exchange. In: 13th ITC specialist seminar: IP Traffic measurement, modeling and management.

Moustakides, G. V., 1986. Optimal stopping times for detecting changes in distributions. Annals of Statistics 14, 1379–1387.

Ngwenya, D., Hancke, G., 2004. Estimation of SRTT using techniques from the practice of SPC and change detection algorithms. In: AFRICON, 2004. 7th AFRICON Conference in Africa. Vol. 1. pp. 397 –402 Vol.1. DOI: 10.1109/AFRICON.2004.1406702

ns-2, 2009. Network Simulator. URL: http://www.isi.edu/nsnam/ns/

Page, E. S., 1954. Continuous inspection schemes. Biometrika 42, 243–254.

Paxon, V., Allman, M., 2000. RFC 2988 - Computing TCP’s retransmission timer. URL: http://www.faqs.org/rfcs/rfc2988.html

Paxson, V., Floyd, S., Dec. 1997. Why we don’t know how to simulate the Internet. In: Simulation Conference, 1997., Proceedings of the 1997 Winter. pp. 1037 –1044. DOI: 10.1109/WSC.1997.640988

Pollak, M., 1985. Optimal detection of a change in distribution. Annals of Statistics 13, 206–227.

Ryu, J.-H., Wan, H., Kim, S., 2010. Optimal design of a CUSUM chart for a mean shift of unknown size. Journal of Quality Technology 42, 311–326.

Seddigh, N., 2000. Performance analysis of TCP’s retransmission timeout mechanism. Master’s thesis, University of Waterloo.

Shu, L., Jiang, W., 2006. A Markov chain model for the adaptive CUSUM control chart. Journal of Quality Technology 38, 135–147.

Siegmund, D., 1985. Sequential analysis: tests and confidence intervals. Springer-Verlag.

Silvey, S. D., 1975. Statistical inference. Chapman and Hall/CRC.

Sparks, R. S., 2000. CUSUM charts for signalling varying locations shifts. Journal of Quality Technology 32, 157–171.

Tanenbaum, A. S., 2003. Computer network, 4th Edition. Prentice Hall.

Wireshark, 2011. Network Protocol Analyzer. URL: http://www.wireshark.org/

Yin, L., Yang, R., Gabbouj, M., Neuvo, Y., Mar. 1996. Weighted median filters: a tutorial. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 43 (3), 157 –192. DOI: 10.1109/82.486465

Yli-Harja, O., Astola, J., Neuvo, Y., feb 1991. Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation. Signal Processing, IEEE Transactions on 39 (2), 395 –410. DOI: 10.1109/78.80823

Zaknich, A., 2005. Principles of adaptive filters and self-learning systems. Springer.

Abstract Views

605
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Análisis y modelado de una estructura sensorial ultrasónica MIMO basado en M-CSS y técnicas de correlación
Alberto Ochoa, Jesús Ureña, Álvaro Hernández, Apolinar González, Walter Mata, Ramón A. Félix
Revista Iberoamericana de Automática e Informática Industrial RIAI  vol: 12  num.: 3  primera página: 270  año: 2015  
doi: 10.1016/j.riai.2015.04.002



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912