Identificación de sistemas en lazo cerrado basada en una estrategia híbrida AGA-Simplex

R.F. Tanda, A. Aguado

Resumen

La identificación de sistemas continuos en lazo cerrado, que puede ser enfocada como un problema de optimización no lineal, puede resultar de difícil solución mediante métodos convencionales. En este artículo se presenta una estrategia híbrida basada en un Algoritmo Genético Adaptable y el método Simplex, que resulta en una solución satisfactoria para dicho problema. Se compara la propuesta con otras técnicas reportadas en la literatura. Tres ejemplos exponen el desempeño del método: identificación de una dinámica de orden elevado; identificación de una dinámica de segundo orden inestable en lazo abierto; y estimación de parámetros en sistemas de generación eléctrica. Los resultados de simulación muestran que la propuesta es un método robusto para la identificación de sistemas en lazo cerrado.

Palabras clave

Algoritmos de optimización; Algoritmos Genéticos; Estimación de parámetros; Identificación en lazo cerrado

Texto completo:

PDF

Referencias

Aguado, A. and Cipriano, A., 2009. Identificación en lazo cerrado y ajuste de reguladores mediante Algoritmos Genéticos. Revista Iberoamericana de Automática e Informática Industrial 6(1), 20-30.

Alfaro, V.M., 2003. Identificación de procesos sobreamortiguados utilizando técnicas de lazo abierto y lazo cerrado. Epiciclos 2(1), 9-30.

Aliprantis, D.C., Sudhoff, S., Kuhn, B., 2006. Genetic algorithm based parameter identification of a Hysteretic Brushless Exciter Model. IEEE Trans. Energy Conversion 21(1), 148-154.

Ananth, I. and Chidambaram, M., 1999. Closed-loop identification of transfer function model for unstable systems. Tech. Rep. TR-336, J. Franklin Institute, 1055-1061.

Åström, K.J. and Hägglund, T., 1984. Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5), 645-651.

Åström, K.J. and Hägglund, T., 2006. Advanced PID Control. Research Triangle Park: Instrumentation, Systems, and Automation Society, Ch. 3, pp. 67-97.

Back, T., 1996. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York.

Baker, E., 1987. Reducing bias and inefficiency in the selection algorithms. In: Proc. Second International Conference on GA 1, 14-21.

de Barros Fontes, A., Sobrinho, M., Lima, J., 2012. New Method of ClosedLoop Identification of FOPDT and SOPDT Models Considering the Padé Zero Influence. In: Proc. 16th IFAC Symposium on SYSID, Brussels, Belgium, July 11-13.

Boza, J., Aguado, A., Gómez, A., Pérez, F., 2005. Identificación de los pará- metros de los sistemas de excitación de los generadores sincrónicos del SEN. In: Proc. 9CHLIE, Marbella, Spain, June 30-July 2.

Butcher, J.C., 2002. The A-stability of methods with Padé and generalized Padé stability functions. Numerical Algorithms 31(4), 47-58.

Cao, L.T., Jin, Q.B., Fan, T.S., Su, W., 2012. On-Line Identification of Process Model Based on Swarm Intelligence Technology. Advanced Materials Research 403-408, 3216-3219.

Chen, C.L., 1989. A simple meted for on-line identification and controller tuning. AIChE Journal 35(12), 2037-2039.

Cong, S., Li, G., Feng, X., 2010. Parameters identification of nonlinear DC Motor model using compound Evolutions Algorithms. In: Proc. World Congress on Engineer 1, London, UK, June 30-July 02.

Forssell, U. and Ljung, L., 1999. Closed-loop identification revisited. Automatica 35(7), 1215-1241.

Goldberg, E., 1989. Genetic Algorithms in search optimization and machine learning, Addison-Wesley.

Granado, E., Mata, E., Revollar, S., Colmenares, W., Pérez, O., 2004. Study about system identification for second order process: an open and closedloop improvement. Ingeniería UC 11(1), 41-47.

Han, Y. and de Callafon, R.A., 2011. Closed-loop Identification of Hammerstein Systems Using Iterative Instrumental Variables. In: Proc. 18th IFAC World Congress, Milano, Italy, August 28-September 2.

Haro, E., 2008. Estimación de parámetros físicos de un automóvil. Revista Iberoamericana de Automática e Informática Industrial 5(4), 28-35.

Ho, W.K., Hang, C.C., Cao, L.S., 1995. Tuning PID controllers based on gain and phase margin specifications. Automatica 31(3), 497-502.

Holland, J.H., 1975. Adaptation in natural and artificial systems, Ann Arbor, The University of Michigan Press.

IEEE, 1992. Recommended Practice for Excitation System Models for Power Systems Stability Studies. IEEE Power Engineering Society, IEEE Standard 421.5. J

Jorgensen, S.B. and Lee, J.H., 2001. Recent Advances and Challenges in Process Identification. In: Proc. Chemical Process Control VI, Arizona, USA, January 8.

Jutan, A. and Rodríguez, E.S., 1984. Extension of a new method for on-line controller tuning. The Canadian Journal of Chemical Engineers 62(6), 802-807.

Landau, I.D. and Karimi, A., 1999. A recursive algorithm for ARMAX model identification in closed-loop. IEEE Trans. on Automatic Control 44(4), 840-843.

Lee, J. and Sung, S.W., 1993. Comparison of two identification methods for PID controller tuning. AIChE Journal 39(4), 695-697.

Lee, J., 1989. On-line PID controller tuning from a single close-loop test. AIChE Journal 35(2), 329-331.

Ljung, L. and Forssell, U., 1999. An alternative motivation for the indirect approach to closed-loop identification. IEEE Trans. on Automatic Control 44(11), 2206-2209.

Mathews, J.H. and Fink, K.K., 2004. Numerical Methods using Matlab, Prentice-Hall Int., New Jersey, USA, Ch. 8, pp. 430-436.

Michalewicz, Z., 1996. Genetic Algorithms + Data Structures = Evolution Program, Springer series Artificial Intelligence, Springer.

Mikleš, J. and Fikar, M., 2007. Process Modelling, Identification, and Control, Springer-Verlag, Berlin Heidelberg, Ch. 6, pp. 230-233.

Mitchell, M., 1999. An Introduction to Genetic Algorithms, A Bradford Book The MIT Press, Massachusetts Institute of Technology, England.

Mohamed, O.M. and Radhi, M., 2005. Using Genetic Algorithms in closedloop identification of the systems with variable structure controller. In: Proc. Word Academy of Sciences, Engineering and Technology 7, 1307- 1311.

Muhlenbein, H. and Schlierkamp, V., 1993. Predictive models for the breeder Genetic Algorithm I. continuous parameter optimization. Evolutionary Computation 1(1), 25-49.

Nelder, J.A. and Mead, R., 1965. A simplex method for function minimization. Computer Journal 7, 308-313.

Ogata, K., 1997. Modern Control Engineering, Pearson-Prentice Hall Int., Ch. 4, pp. 141-160.

Parikh, N.N., Patwardhan, S.C., Gudi, R.D., 2012. Closed-loop Identification of Quadruple Tank System using an Improved Indirect Approach. In: Proc. 8th IFAC Symposium on Advanced Control of Chemical Processes, Furama Riverfront, Singapore, July 10-13.

Pasadyn, A.J., Qin, S.J., Valle-Cervantes, S., 1999. Closed-loop and openloop identification of an industrial wastewater reactor. In: Proc. American Control Conference 6, 3965-3969.

Pouliquen, M., Gehan, O., Pigeon, E., Frikel, M., 2012. Closed-loop output error identification with bounded disturbances. In: Proc. 16th IFAC Symposium on SYSID, Brussels, Belgium, July 11-13.

Pramod, S. and Chidambaram, M., 2000. Closed-loop identification of transfer function model for unstable bioreactors for tuning PID controllers. Bioprocess and Biosystems Engineering 22(2), 185-188.

Rajinikanth, V. and Latha, K., 2009. Integrating and unstable process model estimation with relay feedback. In: Proc. International Conference on Modeling and Simulation, 225-228, India, December 1-3.

Rajinikanth, V. and Latha, K., 2010. Identification and Control of Unstable Biochemical Reactor. International Journal of Chemical Engineering and Applications 1(1), 106-111.

Rivera, D.E., Morari, M., Skogestad, S., 1986. Internal Model Control 4. PID controller design. Ind. Eng. Chem. Res. 25(1), 252–265.

Shardt, Y. and Huang, B., 2011. Closed-Loop Identification using Routine Operating Data: the Effect of Time Delay. In: Proc. 18th IFAC World Congress, Milano, Italy, August 28-September 2.

Skogestad, S., 2003. Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control 13(4), 291–309.

Spendley, W., Hext, G.R., Himsworth, F.R.,1962. Sequential application of simplex design in optimization and evolutionary operation. Technometrics 4, 441-461.

Strejc, V., 1959. Näherungsverfahren für Aperiodische Übertragscharacteristiken. Regelungstechnik 7(7), 124–128 (in Czech).

Sun, L. and Zhu, Y., 2012. New Closed-Loop Identification Approach Based on Output Over-Sampling Scheme. In: Proc. of 16th IFAC Symposium on SYSID, Brussels, Belgium, July 11-13.

Tanda, R.F. and Aguado, A., 2012. Estrategia híbrida AGA-Simplex para la estimación de parámetros de modelos dinámicos a partir de la respuesta al escalón. Investigación Operacional 33(3), 193-209.

Tóth, R., Laurain, V., Gilson, M., Garnier, H., 2012. Instrumental variable scheme for closed-loop LPV model identification. Automatica (Available on-line 7 July).

Tufa, L.D., Ramasamy, M., Shuhaimi, M., 2010. Closed-loop system identification using OBF-ARMAX model. Journal of Applied Sciences 10(24), 3175-3182.

Van den Hof, P., 1998. Closed-loop issues in system identification. Annual Reviews in Control 22, 173-186.

Whorton, M.S., 2004. Closed-loop system identification with Genetic Algorithms. In: Proc. AIAA Guidance, Navigation and Control Conference and Exhibit, Rhode Island, USA, August 16-19.

Wu, C., Lu, C., Han, Y., 2012. Closed-Loop Identification of Power System Based on Ambient Data. Mathematical Problems in Engineering, Volume 2012, Article ID 632897, 16 pp.

Yuan, Y., Chuan, L., Tain, S., 1996. Experience with identification and tuning of excitation system parameters at the second nuclear plant of Taiwan Power Company. IEEE Trans. on Power Systems 11, 747-753.

Yuwana, M. and Seborg, D.E., 1982. A new method for on-line controller tuning. AIChE Journal 28(3), 434-440.

Zheng, W.X., 1996. Identification of closed-loop systems with low-order controllers. Automatica 32(12), 1753–1757.

Zhu, Y., 2003. New development in industrial MPC identification. In: Proc. International Symposium on Advanced Control of Chemical Processes, Hong Kong, China.

Ziegler, J.B. and Nichols, N.B., 1942. Optimum settings for automatic controls. Trans. ASME 64, 759-768.

Abstract Views

588
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912