Estabilización del Péndulo Invertido Sobre Dos Ruedas mediante el método de Lyapunov

O. Octavio Gutiérrez Frías

Resumen

En este trabajo, se presenta un controlador no lineal para estabilizar el sistema Péndulo Invertido Sobre Dos Ruedas. Como primera etapa la estrategia de control, se basa en una linealización parcial por realimentación, para posteriormente proponer una función candidata de Lyapunov en combinación con el principio de invariancia de LaSalle con el fin de obtener el controlador esta- bilizador. El sistema en lazo cerrado obtenido es asintóticamente estable localmente alrededor del punto de equilibrio inestable, con un dominio de atracción calculable.

Palabras clave

Sistema Subactuado; Péndulo Invertido Sobre Dos Ruedas; Método de Lyapunov; Control No Lineal

Texto completo:

PDF

Referencias

Aguilar-Ibanez, C., Gutiérrez-Frías, O. Suárez, M., 2005. Lyapunov-Based Controller for the Inverted Pendulum Cart System. Nonlinear Dynamics 40 (4), 367–374.

Aguilar-Ibáñez, C., Gutiérrez-Frías, O., 2008. A simple model matching for the stabilization of an inverted pendulum cart system. International Journal of Robust and Nonlinear Control 18 (6), 688–699.

Åström, K. J., Furuta, K., 2000. Swinging up a pendulum by energy control. Automatica 26, 287–295.

Baloh, M., Parent, M., 2003. Modeling and model verification of an intelligent self-balancing two-wheeled vehicle for an autonomous urban transportation system. In: The Conference on Computational Intelligence, Robotics, and Autonomous Systems. Singapore.

Bloch, A. M., Leonard, N. E., Marsden, J., 2000. Controlled lagrangians and the stabilization of mechanical systems i. the first matching theorem. IEEE Transactions on Automatic Control 45 (12), 2253–2270.

Do, K. D., Seet, G., 2010. Motion control of a two-wheeled mobile vehicle with an inverted pendulum. Journal of Intelligent & Robotic Systems 60 (3-4), 577–605.

Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A. C., 2002. Joe: A mobile, inverted pendulum. IEEE Transactions on Industrial Electronics 49 (1), 107–114.

Huang, J., Zhi-Hong Guan, Matsuno, T., Fukuda, T., Sekiyama, K., 2010. Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Transactions on robotics 26 (4), 750–758.

Jeong, S., Takahashi, T., 2008. Wheeled inverted pendulum type assistant robot: design concept and mobile control. Intelligent Service Robotics 1, 313–320.

Kalra, S., Patel, D., Stol, K., 2007. Design and hybrid control of a two wheeled robotic plataform. In: Proceedings 2007 Australasian Conference on Robotics and Automation. Brisbane, Australia.

Kim, Y., Kim, S. H., Kwak, Y. K., 2005. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. Journal of Intelligent and Robotic Systems 44, 25–46.

Khalil, H. K., 2002. Nonlinear Systems, Prentice Hall.

Lozano, R., Fantoni, I., Block, D. J., 2000. Stabilization on the inverted pendulum around its homoclinic orbit. System & Control letters 40 (1), 197–204.

Nawawi, S. W., Ahmad, M. N., Osman, J. H. S., 2008. Real-time control of a two-wheeled inverted pendulum mobile robot. International Journal of Computer and Information Engineering 2 (1), 70–76.

Noh, J. S., Lee, G. H., Jung, S., 2010. Position control of a mobile inverted pendulum system using radial basis function network. International Journal of Control, Automation, and Systems 8 (1), 157–162.

Pathak, K., Franch, J., Agrawal, S. K., 2005. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on robotics 21 (3), 505–513.

Ren, T.-J., Chen, T.-C., Chen, C.-J., 2008. Motion control for a two-wheeled vehicle using a self-tuning pid controller. Control Engineering Practice 16, 365–375.

Rugh, W. J., 1996. Linear System Theory, Prentice Hall.

Salerno, A., Angeles, J., 2003. On the nonlinear controllability of a quasiholonomic mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation. Vol. 3. Taipei, Taiwan, pp. 3379–3967.

Segway Inc., http://www.segway.com/, 2011.

Shiriaev, A., Ludvigsen, H., Egeland, O., 2004. Swinging up the spherical pendulum via stabilization of its first integrals. Automatica 40, 73–85.

Spong, M. W., 1996. Energy based control of a class of underactuated mechanical system. In: Proc. 13th IFAC World Congress. San Francisco, CA., pp. 431–435.

Vermeiren, L., Dequidt, A., Guerra, T. M., Rago-Tirmant, H., Parent, M., 2011. Modeling, control and experimental verification on a two-wheeled vehicle with free inclination:an urban transportation system. Control Engineering Practice 19, 744–756.

Viguria, A., Prieto, A., Fiacchini, M., Cano, R., Rubio, F. R., Aracil, J., Canudas de Wit, C., 2006. Desarrollo y experimentación de un vehículo basado en péndulo invertido (ppcar). Revista iberoamericana de automática e informática industrial (RIAI) 3 (4), 54–63.

Yamamoto, Y., NXTway-GS Model-Based Design Control of selfbalancing two-wheeled robot built with LEGO Mindstorms NXT, http://www.mathworks.com/matlabcentral/fileexchange/19147, 2009.009.

Abstract Views

901
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Control descentralizado basado en eventos para el consenso de múltiples robots tipo péndulo invertido en el esquema líder-seguidor
O.D. Ramírez-Cárdenas, J.F. Guerrero-Castellanos, J. Linares-Flores, S. Durand, W.F. Guerrero-Sánchez
Revista Iberoamericana de Automática e Informática industrial  vol: 16  num.: 4  primera página: 435  año: 2019  
doi: 10.4995/riai.2019.11113



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912