Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión

Jorge Hurel Ezeta, Anthony Mandow, Alfonso García Cerezo

Resumen

El propósito de este artículo es efectuar una revisión del estado del conocimiento en el modelado y control de los sistemas de suspensión activa y semiactiva. Se analizan las principales características de los diferentes tipos de sistemas de suspensión: pasiva, activa y semiactiva. Respecto al modelado y simulación de los sistemas de suspensión, se examinan los distintos enfoques, herramientas y aplicaciones en el contexto de la dinámica vehicular. Además, para el modelo de un cuarto de vehículo, ampliamente utilizado en la literatura, se ofrece su desarrollo mediante ecuaciones diferenciales, función de transferencia, y ecuaciones de estado, incluyendo soluciones y simulaciones en Simulink y SimMechanics. En cuanto al control, se revisan las principales estrategias para la suspensión de vehículos y se apuntan aplicaciones en otros campos de la ingeniería.

Palabras clave

Simulación; Suspensión activa; Modelos; Suspensión pasiva; Robótica

Texto completo:

PDF

Referencias

Abdel-Rohman, M., Hassan, J. M., 2010. Compensation of time delay effect in semi-active controlled suspension bridge. Journal of Vibration and Control 16 (10), 1527–1558.

Abu-Khudhair, A., Muresan, R., Yang, S., 2009. Fuzzy control of semi-active automotive suspensions. In: International Conference on Mechatronics and Automation. pp. 2118–2122.

Akcay, H., Turkay, S., 2008. RMS performance limitations and constraints for ¨ quarter-car active suspensions. In: 16th Mediterranean Conference on Control and Automation. pp. 425–430.

Alexandre, P., Preumont, A., 1996. Force control of a six-legged walking machine. IEEE Colloquium on Information Technology for Climbing and Walking Robots 162-2 (5), 1–5.

Alexandru, C., Alexandru, P., 2011. A comparative analysis between the vehicles passive and active suspensions. International Journal Of Mechanics 5 (4), 371–378.

Allotta, B., Pugi, L., Bartolini, F., 2008. Design and experimental results of an active suspension system for a high-speed pantograph. IEEE/ASME Transactions on Mechatronics 13 (5), 548–557.

Amer, N., Ramli, R., Mahadi, W., Abidin, M., 2011. A review on control strategies for passenger car intelligent suspension system. In: International Conference on Electrical, Control and Computer Engineering. pp. 404 –409.

Balike, K. P., Rakheja, S., Stiharu, I., 2011. Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension. Vehicle System Dynamics 49 (1-2), 107–128.

Bhandari, V., Subramanian, S., 2010. Development of an electronically controlled pneumatic suspension for commercial vehicles. In: International Conference on Power, Control and Embedded Systems. pp. 1–6.

Biral, F., Grott, M., Oboe, R., Makei, C., Vincenti, E., 2008. Modelling, control and design of heavy duty suspension systems. 10th IEEE International Workshop on Advanced Motion Control, 771–776.

Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., Ambrose, R., 2010. An active suspension system for lunar crew mobility. IEEE Aerospace Conference, 1–9.

Blundell, M., Harty, D., 2004. The Multibody Systems Approach to Vehicle Dynamics. Butterworth-Heinemann.

Boada, M. J., Boada, B. L., Castejón, C., Díaz, V., 2005. A fuzzy-based suspension vehicle depending on terrain. International Journal of Vehicle Design 37 (4), 311–326.

Boers, Y., Weiland, S., Damen, A., 2002. Average H2 control by randomized algorithms. International Journal of Control 75 (9), 637–644.

Bouazara, M., Gosselin-Brisson, S., Richard, M., 2007. Design of an active suspension control for a vehicle model using a genetic algorithm. Transactions of the Canadian Society for Mechanical Engineering 31 (3), 317–333.

Bronowicki, A. J., Abhyankar, N. S., Griffin, S. F., 1999. Active vibration control of large optical space structures. Smart Materials and Structures 8 (6), 740.

Canale, M., Milanese, M., Ahmad, Z., Matta, E., 2004. An improved semiactive suspension control strategy using predictive techniques. In: International Conference on Information and Communication Technologies: From Theory to Applications.

Cao, J., Liu, H., 2010. An interval fuzzy controller for vehicle active suspension systems. IEEE Transactions on Intelligent Transportation Systems 11 (4), 885–895.

Cao, J., Liu, H., Li, P., Brown, D., 2008. State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Transactions on Intelligent Transportation Systems 9 (3), 392–405.

Chamseddine, A., Noura, H., Ouladsine, M., 2008. Sensor location for actuator fault diagnosis in vehicle active suspension. In: IEEE International Conference on Control Applications. pp. 456 –461.

Chen, J., Guo, W., Feng, W., Chen, H., Dong, F., 2011. Research of semi-active suspension self-adjust sky/ground-hook hybrid control simulation. In: International Conference on Electric Information and Control Engineering.

Chen, Y., 2009. Skyhook surface sliding mode control on semi-active vehicle suspension system for ride comfort enhancement. Engineering 1, 23–32.

Chen, Y., He, J., Li, X., Peng, J., Gao, M., 2008. A study on matching and multi-objective fuzzy control strategy of heavy truck suspension system. International Symposium on Computational Intelligence and Design, 91–94.

Cheok, K. C., Huang, N. J., 1989. Lyapunov stability analysis for self-learning neural model with application to semi-active suspension control system. In: IEEE International Symposium on Intelligent Control. pp. 326 – 331.

Choi, S.-B., Lee, H.-S., Park, Y.-P., 2002. H∞ control performance of a fullvehicle suspension featuring magnetorheological dampers. Vehicle System Dynamics 38 (5), 341–360.

Christenson, R. E., 2001. Semiactive control of civil structures for natural hazard mitigation: Analytical and experimental studies. Ph.D. thesis, Department of Civil Engineering and Geological Sciences, Notre Dame, Indiana.

Chrzan, M. J., Carlson, J. D., 2001. MR fluid sponge devices and their use in vibration control of washing machines. In: Proceedings of SPIE - The International Society for Optical Engineering. Vol. 4331. pp. 370–378.

Chugo, D., Kawabata, K., Kaetsu, H., Asama, H., Mishima, T., 2004. Vehicle control based on body configuration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Vol. 2. pp. 1493–1498.

Díaz, I., Pereira, E., Hudson, M. J., Reynolds, P., 2012. Enhancing active vibration control of pedestrian structures using inertial actuators with local feedback control. Engineering Structures 41, 157–166.

Dixon, J. C., 2009. Suspension Geometry and Computation, 1st Edition. Antony Rowe Ltd.

Dong, X.-M., Yu, M., Liao, C.-R., Chen, W.-M., 2010. Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dynamics 59 (3), 433–453.

Ekoru, J. E., Dahunsi, O. A., Pedro, J. O., 2011. PID control of a nonlinear half-car active suspension system via force feedback. In: IEEE AFRICON Conference. pp. 1 –6.

Ezzine, J., Tedesco, F., 2009. H∞ approach control for regulation of active car suspension. International journal of mathematical models and methods in applied sciences 3 (3), 309–316.

Fakhari, V., Talebi, H. A., Ohadi, A. R., 2010. A robust active vibration control of automotive engine. In: ASME 10th Biennial Conference on Engineering Systems Design and Analysis. Vol. 3. pp. 219–228.

Fallah, M., Bhat, R., Xie, W., 2008. New nonlinear model of macpherson suspension system for ride control applications. In: American Control Conference, 2008.

Felix-Herran, L., Rodriguez-Ortiz, J., Soto, R., Ramirez-Mendoza, R., 2008. Modeling and control for a semi-active suspension with a magnetorheological damper including the actuator dynamics. In: Electronics, Robotics and Automotive Mechanics Conference.

Fischer, D., Isermann, R., 2004. Mechatronic semi-active and active vehicle suspensions. Control Engineering Practice 12 (11), 1353–1367.

Fleming, P. J., Purshouse, R. C., 2002. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice 10 (11), 1223 – 1241.

Fruehauf, F., Kasper, R., Lueckel, J., 1985. Design of an active suspension for a passenger vehicle model using input processes with time delays. Vehicle System Dynamics 14 (1-3), 115–120.

Gao, R. Z., Xu, Z. Q., Zhang, J. J., 2011. Optimization of fuzzy logic rules based on improved genetic algorithm. Applied Mechanics and Materials 44- 47, 1496–1499.

Guglielmino, E., Edge, K. A., 2004. A controlled friction damper for vehicle applications. Control Engineering Practice 12 (4), 431–443.

Guo, D., Hu, H., Yi, J., 2004. Neural network control for a semi-active vehicle suspension with a magnetorheological damper. Journal of Vibration and Control 10 (3), 461–471.

Gysen, B. L., Janssen, J. L., Paulides, J. J., Lomonova, E. A., 2009. Design aspects of an active electromagnetic suspension system for automotive applications. IEEE Transactions on Industry Applications 45 (5), 1589–1597.

Gysen, B. L., Paulides, J. J., Janssen, J. L., Lomonova, E. A., 2008. Active electromagnetic suspension system for improved vehicle dynamics. In: IEEE Vehicle Power and Propulsion Conference.

Haibo, L., Jianwei, Y., 2009. Study on semi-active suspension system simulation based on magnetorheological damper. In: Second International Conference on Intelligent Computation Technology and Automation. Vol. 2. pp. 936–939.

Hashemnia, S., Bahari, M. H., 2009. Genetic algorithm aided groundhook control strategy for semi-active magneto rheological damper suspension system. Australian Journal of Basic and Applied Sciences 3 (2), 1136–1144.

Heath, E. T., 2005. Vehicle active suspension system sensor reduction. Ph.D. thesis, University of Texas, Austin.

Hrovat, D., 1990. Optimal active suspension structures for quarter-car vehicle models. Automatica 25 (5), 845–860.

Hrovat, D., 1997. Survey of advanced suspension developments and related optimal control applications. Automatica 33 (10), 1781–1817.

Huang, Q., Fukuhara, Y., 2006. Posture and vibration control based on virtual suspension model using sliding mode control for six-legged walking robot. In: IEEE International Conference on Intelligent Robots and Systems. pp. 5232–5237.

Huang, S., Chen, H., 2006. Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics 16 (10), 607– 622.

Hurel, J., Mandow, A., García-Cerezo, A., 2012a. Nonlinear two-dimensional modeling of a McPherson suspension for kinematics and dynamics simulation. In: The 12th IEEE International Workshop on Advanced Motion Control. pp. 1–6.

Hurel, J., Mandow, A., García-Cerezo, A., 2012b. Tuning a fuzzy controller by particle swarm optimization for an active suspension system. In: 38th Annual Conference of the IEEE Industrial Electronics Society. Montreal, Canadá, pp. 1–6.

Iagnemma, K., Rzepniewski, A., Dubowsky, S., Schenker, P., 2003. Control of robotic vehicles with actively articulated suspensions in rough terrain. Autonomous Robots 14, 5–16.

Jia, Q. F., Xu, H. B., Wang, Y., Liu, X. J., 2006. Vehicle suspension with magnetorheological damper under semi-active control. Journal of Tianjin University Science and Technology 39 (7), 768–772.

Kamel, M. A., He, W., 2010. Active vibration control of inflated space stuctures using smart materials. In: Proceedings of International Conference on Computer and Information Application. pp. 406–409.

Karnopp, D., 1986. Theoretical limitations in active vehicle suspensions. Vehicle System Dynamics 15 (1), 41–54.

Karnopp, D., Crosby, M. J., Harwood, R. A., 1974. Vibration control using semi-active force generators. Journal Of Engineering For Industry 96 (2), 619–625.

Karnopp, D., So, S. G., 1998. Energy flow in active attitude control suspensions: A bond graph analysis. Vehicle System Dynamics 29 (2), 69–81.

Kazerooni, H., Chu, A., Steger, R., 2007. That which does not stabilize, will only make us stronger. The International Journal of Robotics Research 26 (1), 75–89.

Khemliche, M., Dif, I., Latreche, S., Bouamama, B. O., 2004. Modelling and analysis of an active suspension 1/4 of vehicule with bond graph. International Symposium on Control, Communications and Signal Processing, 811– 814.

Kim, C., Ro, P., Kim, H., 1999. Effect of the suspension structure on equivalent suspension parameters. Automobile Engineering, Proceedings of the Institution of Mechanical Engineers 213 (5), 457–470.

Kim, D., Hwang, S., Kim, H., 2008. Vehicle stability enhancement of fourwheel-drive hybrid electric vehicle using rear motor control. IEEE Transactions on Vehicular Technology 57 (2), 727–735.

Kim, R.-K., Hong, K.-S., 2007. Skyhook control using a full-vehicle model and four relative displacement sensors. In: International Conference on Control, Automation and Systems. pp. 268 –272.

Koch, G., Fritsch, O., Lohmann, B., 2010. Potential of low bandwidth active suspension control with continuously variable damper. Control Engineering Practice.

Koch, G., Spirk, S., Pellegrini, E., Pletschen, N., Lohmann, B., 2011. Experimental validation of a new adaptive control approach for a hybrid suspension system. In: American Control Conference. pp. 4580 –4585.

Korkmaz, S., 2011. A review of active structural control: challenges for engineering informatics. Computers and Structures 89 (23), 2113–2132.

Koulocheris, D. V., Dertimanis, V. K., 2009. Design of a novel hybrid optimization algorithm. In: ICINCO 6th International Conference on Informatics in Control, Automation and Robotics. Vol. 1 ICSO. pp. 129–135.

Koumboulis, F., Tzamtzi, M., 2007. A metaheuristic approach for controller design of multivariable processes. In: IEEE Conference on Emerging Technologies and Factory Automation. pp. 1429–1432.

Kowal, J., Pluta, J., Konieczny, J., Kot, A., 2008. Energy recovering in active vibration isolation system - results of experimental research. Journal of Vibration and Control 14 (7), 1075–1088.

Krebs, A., Risch, F., Thueer, T., Maye, J., Pradalier, C., Siegwart, R., 2010. Rover control based on an optimal torque distribution - application to 6 motorized wheels passive rover. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 4372 –4377.

Krüger, W., Vaculin, O., Kortüm, W., 2002. Multi-disciplinary simulation of vehicle system dynamics. In: RTO AVT Symposium on “Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation”.

Kumar, M. S., 2008. Development of active suspension system for automobiles using PID controller. In: Proceedings of the World Congress on Engineering. Vol. II. London, UK.

Kuo-Jung, L., Jia-Yush, Y., A., K. J., 2004. Sliding mode control for active vibration isolation of a long range scanning tunneling microscope. Review of Scientific Instruments 75 (11), 4367–4373.

Lee, H., 2004. Virtual test track. IEEE, Transactions on Vehicular Technology 53 (6), 1818 – 1826.

Lee, H. J., Jung, H. J., Cho, S. W., Lee, I. W., 2008. An experimental study of semiactive modal neuro-control scheme using MR damper for building structure. Journal of Intelligent Material Systems and Structures 19 (9), 1005– 1015.

Lee, H. S., Choi, S. B., 2000. Control and response characteristics of a magnetorheological fluid damper for passenger vehicles. Journal Intelligent Material Systems Structures 11 (1), 80–87.

Lin, Y., Lin, C., Shieh, N., 2006. A hybrid evolutionary approach for robust active suspension design of rail vehicles. IEEE Transactions on control systems technology 14 (4), 695–706.

Liu, D., Chen, H., Jiang, R., Liu, W., 2010. Study of ride comfort of active suspension based on model reference neural network control system. In: Sixth International Conference on Natural Computation. Vol. 4. pp. 1860–1864.

Lizarraga, J., Sala, J. A., Biera, J., 2008. Modelling of friction phenomena in sliding conditions in suspension shock absorbers. Vehicle System Dynamics 46 (sup1), 751–764.

Lou, Z., Ervin, R., Filisko, F., 1994. A preliminary parametric study of electrorheological dampers. Transaction. ASME Journal Fluids Engineering 116 (3), 570–576.

Malek, K. M., Hedrick, J. K., 1985. Decoupled active suspension design for improved automotive ride quality/handling performance. Vehicle System Dynamics 14 (1-3), 78–81.

Mantaras, D. A., Luque, P., Vera, C., 2004. Development and validation of a three-dimensional kinematic model for the mcpherson steering and suspension mechanisms. Mechanism and Machine Theory 39, 603–619.

Margolis, D., Shim, T., 2001. Bond graph model incorporating sensors, actuators, and vehicle dynamics for developing controllers for vehicle safety. Journal of the Franklin Institute 338 (1), 21–34.

Mei, T., Foo, T., Goodall, R., 2005. Genetic algorithms for optimising active controls in railway vehicles. IEE Colloquium (Digest) 521, 10/1–10/8.

Mei, T., Goodall, R., 2002. Use of multiobjective genetic algorithms to optimize inter-vehicle active suspensions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 216 (1), 53–63.

Miller, L., Nobles, C., 1990. Methods for eliminating jerk and noise in semiactive suspensions. SAE (Society of Automotive Engineers) Transactions 99 (2), 943–951.

Mudi, R. K., Pal, N. R., 1999. A robust self-tuning scheme for PI and PD type fuzzy controllers. IEEE Transactions On Fuzzy Systems 7 (1), 2–16.

Nagai, M., Moran, A., Tamura, Y., Koizumi, S., 1997. Identification and control of nonlinear active pneumatic suspension for railway vehicles, using neural networks. Control Engineering Practice 5 (8), 1137–1144.

Nan, Y.-H., Xuan, D.-J., Kim, J.-W., Ning, Q., Kim, Y.-B., 2008. Control of an active suspension based on fuzzy logic. In: International Conference on Computer and Electrical Engineering.

Nehl, T. W., Betts, J. A., Mihalko, L. S., 1996. An integrated relative velocity sensor for real-time damping applications. IEEE Transactions on Industry Applications 32 (4), 873–881.

Nguyen, L. H., Park, S., Turnip, A., Hong, K.-S., 2009. Modified skyhook control of a suspension system with hydraulic strut mount. In: ICCAS-SICE, 2009. pp. 1347–1352.

Olsson, C., 2006. Active automotive engine vibration isolation using feedback control. Journal of Sound and Vibration 294 (1-2), 162 – 176.

Palazzolo, A. B., Jagannathan, S., Kascak, A. F., Griffin, T., Giriunas, J., 1993. Piezoelectric actuator-active vibration control of the shaft line for a gas turbine engine test stand. In: American Society of Mechanical Engineers. pp. 1–12.

Papegay, Y. A., Merlet, J.-P., Daney, D., 2005. Exact kinematics analysis of car’s suspension mechanisms using symbolic computation and interval analysis. Mechanism and Machine Theory 40 (4), 395 – 413.

Patil, N. J., Chile, R. H., Waghmare, L. M., 2010. Fuzzy adaptive controllers for speed control of PMSM drive. International Journal of Computer Applications 1 (11), 84–91.

Petek, N., 1992. Electronically controlled shock absorber using electrorheological fluid. SAE Special Publications 917, 67–72.

Poetsch, G., Evans, J., Meisinger, R., Kortum, W., Baldauf, W., Veitl, A., Wa- ¨ llaschek, J., 1997. Pantograph/catenary dynamics and control. Vehicle System Dynamics 28 (2-3), 159–195.

Potau, X., Comellas, M., Nogues, M., Roca, J., 2011. Comparison of di ´ fferent bogie configurations for a vehicle operating in rough terrain. Journal of Terramechanics 48 (1), 75–84.

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., 2008. BigDog, the roughterrain quadruped robot. In: 17th World Congress, The International Federation of Automatic Control. pp. 10822–108252.

Rajeswari, K., Lakshmi, P., 2010. PSO optimized fuzzy logic controller for active suspension system. In: International Conference on Advances in Recent Technologies in Communication and Computing. pp. 278–283.

Ramli, R., Pownall, M., Levesley, M., Crolla, D. A., 2004. Dynamic analysis of semi-active suspension systems using a co-simulation approach. Multi-Body Dynamics: Monitoring and Simulation Techniques-III 32 (4), 391–399.

Rattasiri, W., Halgamuge, S., 2003. Computationally advantageous and stable hierarchical fuzzy systems for active suspension. IEEE Transactions on Industrial Electronics 50 (1), 48–61.

Redfield, R., 1990. Low-bandwidth semi-active damping for suspension control. Proceedings of the American Control Conference, 1357–1362.

Rini, D. P., Shamsuddin, S. M., Yuhaniz, S. S., 2011. Particle swarm optimization: Technique, system and challenges. International Journal of Computer Applications 14 (1), 19–26.

Rivin, E., 1985. Passive engine mounts - some directions for further development. SAE Technical Paper Series (850481).

Roth, P. A., Lizell, M., 1996. A lateral semi-active damping system for trains. Vehicle System Dynamics 25 (SUPPL.), 585–598.

Samin, J. C., Brüls, O., Collard, J. F., Sass, L., Fisette, P., 2007. Multiphysics modeling and optimization of mechatronic multibody systems. Multibody System Dynamics 18 (3), 345–373.

Sassi, S., Cherif, K., Mezghani, L., Thomas, M., Kotrane, A., 2005. An innovative magneto-rheological damper for automotive suspension: from design to experimental characterization. Smart Material Structures 14, 811–822.

Savaresi, S. M., Poussot-Vassal, C., Spelta, C., Dugard, L., Sename, O., 2010. Semi-Active Suspension Control Design for Vehicles, 1st Edition. Elsevier Ltd.

Schiehlen, W., 2007. Research trends in multibody system dynamics. Multibody System Dynamics 18, 3–13.

Schiehlen, W., Guse, N., Seifried, R., 2006. Multibody dynamics in computational mechanics and engineering applications. Computer Methods in Applied Mechanics and Engineering 195 (41-43), 5509–5522.

Schoenfeld, K., Hartmut, G., Hesse, 1991. Electronically controlled air suspension (ECAS) for commercial vehicles. SAE Special Publications 892, 15–24.

Sharp, R., Hassan, S., 1986. Relative performance capabilities of passive, active and semi-active car suspension systems. Proceedings of the Institution of Mechanical Engineers. Part D, Transport engineering 200 (D3), 219–228.

Shen, Y., Golnaraghi, M. F., Heppler, G. R., 2007. Load-leveling suspension system with a magnetorheological damper. Journal of Vehicle Mechanics and Mobility 45 (4), 297–312.

Shen, Y., Yang, S., Yin, W., 2006. Application of magnetorheological damper in vibration control of locomotive. World Congress on Intelligent Control and Automation China, 8113–8116.

Shi, Y., Eberhart, R., 1998. Modified particle swarm optimizer. In: Proceedings of the IEEE Conference on Evolutionary Computation. pp. 69–73.

Shiao, Y., Lai, C.-C., Nguyen, Q.-A., 2010. The analysis of a semi-active suspension system. In: Proceedings of the SICE Annual Conference. pp. 2077– 2082.

Shin, K.-K., 2008. Active vibration control of active fuel management engines using active engine mounts. Vol. 16. pp. 27–32.

Shirahatti, A., Prasad, P., Panzade, P., Kulkarni, M., 2008. Optimal design of passenger car suspension for ride and road holding. Journal of the Brazilian Society of Mechanical Sciences and Engineering 30 (1), 66–76.

Siau, G. R., July 2008. Equivalent spring and damper for conceptual suspension modeling. Master’s thesis, Eindhoven University of Technology.

Silva, L., Magallán, G., Angelo, C. D., García, G., 2008. Vehicle dynamics using multi-bond graphs: Four wheel electric vehicle modeling. In: 34th Annual Conference of the IEEE Industrial Electronics Society. Vol. 34. pp. 2846–2851.

Spelta, C., Previdi, F., Savaresi, S. M., Fraternale, G., Gaudiano, N., 2009. Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics 19 (3), 410 – 421.

Spencer, B. F., Dyke, S. J., Sain, M. K., Carlson, J. D., 1997. Phenomenological model of a magnetorheological damper. ASCE Journal of Engineering Mechanics 123 (3), 230–238.

Sun, J., Qingmei, Y., 2007. On vibration control methods of vehicle. Proceedings of the 26th Chinese Control Conference, 71–74.

Sun, J., Sun, Y., 2007. A fuzzy method improving vehicle ride comfort and road holding capability. IEEE Conference on Industrial Electronics and Applications 2, 1361–1364.

Sun, J., Wang, K., 2010. Control method research of suspension system of engineering vehicle. In: Seventh International Conference on Fuzzy Systems and Knowledge Discovery. Yantai, China, pp. 654–658.

Sunwoo, M., Cheok, K. C., Huang, N. J., 1990. Application of model reference adaptive control to active suspension systems. Proceedings of the American Control Conference, 1340–1346.

Tamai, E., Sotelo, J., sep. 1995. LQG control of active suspension considering vehicle body flexibility. In: Control Applications, Proceedings of the 4th IEEE Conference on. pp. 143–147.

Tang, X., Zuo, L., 2010. Regenerative semi-active control of tall building vibration with series TMDs. No. 5530485. pp. 5094–5099.

Tani, K., Shirai, N., 1989. Active suspension four-wheel model for a terrain ´ robot. International Workshop on Intelligent Robots and Systems, 408–413.

Thompson, Davis, B., 1991. A technical note on the lotus suspension patents. Vehicle System Dynamics 20 (6), 381–383.

Tian, D.-P., Li, N.-Q., 2009. Fuzzy particle swarm optimization algorithm. In: IEEE International Joint Conference on Artificial Intelligence. pp. 263–267.

Tsao, Y., Chen, R., 2001. The design of an active suspension force controller using genetic algorithms with maximum stroke constraints. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 215 (3), 317–327.

Venugopal, R., Beine, M., Ruekgauer, A., 2002. Real-time simulation of adaptive suspension control using dSPACE control development tools. International Journal of Vehicle Design 29 (1-2), 128–138.

Waldron, K. J., Abdallah, M. E., 2007. An optimal traction control scheme for off-road operation of robotic vehicles. IEEE/ASME Transactions on Mechatronics 12 (2), 126–133.

Wang, E.-R., Ying, L., Wang, W.-J., S., R., Su, C.-Y., 2007. Analyses of inverse model based semi-active control of vehicle suspension with magnetorheological dampers. In: IEEE International Conference on Control Applications. pp. 220 –225.

Wang, J., Fan, Z.and Terpenny, J., Goodman, E., 2005. Knowledge interaction with genetic programming in mechatronic systems design using bond graphs. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 35 (2), 172–182.

Wang, Q., Jiang, W., Chen, W., Zhao, J., 2008. Simultaneous optimization of mechanical and control parameters for integrated control system of active suspension and electric power steering. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering 44 (8), 67–72.

Wang, Z., Chen, Z., 2010. Semi-active control of isolated elevated highway bridge with self-powered mr damper. Journal of Earthquake Engineering and Engineering Vibration 30 (1), 126–133.

Wu, L., Cao, Y., Chen, H., 2008. Hierarchical modeling control of a motorcycle semi-active suspension with six degree-freedoms. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics. pp. 1400–1405.

Xie, H., Cong, D., Wang, B., Xu, X., 2006. Simulation of biped robot with heterogeneous legs controlled by magnetorheological damper. Gongneng Cailiao/Journal of Functional Materials 37 (5), 799–801+804.

Xinjie, J., Shengjin, L., 2009. Design of the fuzzy-PID controller for new vehicle active suspension with electro-hydrostatic actuator. In: 4th IEEE Conference on Industrial Electronics and Applications. pp. 3724 –3727.

Xu, J., Fei, J., 2010. Neural network predictive control of vehicle suspension. In: 2nd International Conference on Information Science and Engineering.

Xue, X. D., Cheng, K. W., Zhang, Z., Lin, J. K., Wang, D. H., Bao, Y. J., Wong, M. K., Cheung, N., 2011. Study of art of automotive active suspensions. In: International Conference on Power Electronics Systems and Applications.

Yágiz, N., Yuksek, I., 2001. Sliding mode control of active suspensions for a full vehicle model. International Journal of Vehicle Design 26 (2), 264–276.

Yang, Y., Ren, W., Chen, L., Jiang, M., Yang, Y., 2009. Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics. Applied Mathematical Modelling 33 (1), 11–33.

Yoneda, K., Iiyama, H., Hirose, S., 1994. Sky-hook suspension control of a quadruped walking vehicle. In: IEEE International Conference on Robotics and Automation.

Yong-Jie, L., Shao-Pu, Y., Hao-yu, L., 2008. Dynamic analysis of semi-active vehicle suspensions using a co-simulation approach. In: IEEE Vehicle Power and Propulsion Conference. pp. 1 –4.

Yoshimura, T., Nakaminami, K., Kurimoto, M., Hino, J., 1999. Active suspension of passenger cars using linear and fuzzy-logic controls. Control Engineering Practice 7 (1), 41–47.

Yu, F., Li, D.-F., Crolla, D., 2008. Integrated vehicle dynamics control -stateof-the art review. In: IEEE Vehicle Power and Propulsion Conference. pp. 1 –6.

Yu, H., Qian, X., Ling, S., 2009. Analysis and comparison of intelligent control methods for computer-controlled artificial leg. In: ICREATE ’09 - International Convention on Rehabilitation Engineering and Assistive Technology.

Zanella, M., Koch, T., Scharfeld, F., 2001. Development and structuring of mechatronic systems exemplified by the modular vehicle X-mobile. IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM 2, 1059–1064.

Zapateiro, M., Karimi, H., Luo, N., 2011. Semiactive vibration control of nonlinear structures through adaptive backstepping techniques with h∞ performance. International Journal of Systems Science 42 (5), 853–861.

Zhang, H., Winner, H., Li, W., 2009. Comparison between skyhook and minimax control strategies for semi-active suspension system. World Academy of Science, Engineering and Technology 55, 618–621.

Zhang, Z.-N., Liang, F., Wang, Y.-B., Li, C.-G., 2008. Study on active suspension control of full-vehicle steering model of using DSP. In: IEEE, Vehicle Power and Propulsion Conference. pp. 1–5.

Zhu, W. H., Tryggvason, B., 2004. On active acceleration control of vibration isolation systems. IEEE Conference on Decision and Control 4, 4363–4368.

Abstract Views

3690
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Tubular linear permanent magnet synchronous machine applied to semi-active suspension systems
Ana Paula Zanatta, Ben Hur Bandeira Boff, Paulo Roberto Eckert, Aly Ferreira Flores Filho, David George Dorrell
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering  vol: 37  num.: 5  primera página: 1781  año: 2018  
doi: 10.1108/COMPEL-01-2018-0022



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912