Diseño de AUV.Arquitectura de hardware y software

Alain Martínez, Yidier Rodriguez, Luis Hernández, Carlos Guerra, Jorge Lemus, Hichem Sahli

Resumen

El presente documento discute la estrategia bajo la que fueron concebidas la arquitectura de hardware y software para el prototipo de vehículo autónomo: HRC-AUV, así como la selección de los elementos fundamentales que las componen. El diseño obtenido pondera la sencillez y el desarrollo en condiciones de bajo costo, factores útiles a investigadores que comienzan su actividad en este campo. El trabajo resume las prestaciones que brindan dichas estructuras y las pruebas preliminares de operatividad a que han sido sometidas para demostrar la validez de su empleo en la explotación de un AUV. De igual forma se presentan los modelos dinámicos linealizados de la planta, utilizados en la sintonía de los lazos de control. La respuesta de dichos lazos y en general del HRC-AUV navegando en el océano, es presentada a través de los resultados obtenidos en varias pruebas experimentales.

Palabras clave

AUV; arquitectura de hardware; arquitectura de software

Texto completo:

PDF

Referencias

Batlle, J., Ridao, P., Garcia, R., Carreras, M., CufA, X., El-Fakdi, A., Ribas, D., Nicosevici, T., Batlle, E., Oliver, G., Ortiz, A., Antich, J., 2004. Uris: Underwater robotic intelligent system. In: Aranda, J., Armada, M. A., de la Cruz, J. M. (Eds.), Automation for the Maritime Industries. Instituto de Automática Industrial, pp. 177–203.

Breivik, M., Fossen, T., 2004. Path following of straight lines and circles for marine surface vessels. In: IFAC Conf. Contr. Appl. Marine Systems. Ancona, Italy.

Breivik, M., Fossen, T., 2009. Guidance laws for autonomous underwater vehicles. In: Inzartsev, A. V. (Ed.), Underwater Vehicles. InTech, Vienna, Austria, pp. 51–76.

Brown, H. C., Kim, A., Eustice, R. M., 2009. An overview of autonomous underwater vehicle research and testbed at perl. Marine Technology Society Journal 43 (2), 33–47.

Calvo, O., Sousa, A., Bibiloni, J., Curti, H., Acosta, G., Rozenfeld, A., 2009. Low-cost autonomous underwater vehicle for underwater acoustic inspections. Journal of Maritime Research 6 (2), 37–52.

EncarnaA §ao, P., Pascoal, A., 2001. Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft. In: Decision and Control. Vol. 1. IEEE, Glasgow, Scotland,UK, pp. 964–969 vol. 1.

Estrela da Silva, J., Terra, B., Martins, R., Borges de Sousa, J., 2007. Modeling and simulation of the lauv autonomous underwater vehicle. In: 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics. IEEE Control Systems Society, Szczecin, Polonia.

Fossen, T. I., 1994. Guidance and Control of Ocean Vehicles. John Wiley & Sons, N.Y, USA.

Fossen, T. I., 2002. Marine control systems: Guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics Trondheim, Norway.

Fossen, T. I., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons.

Fossen, T. I., Ross, A., 2006. Nonlinear modelling, identification and control of uuvs. In: Sutton, R. (Ed.), Advances in unmanned marine vehicles. Vol. 69. Peter Peregrinus LTD, London, Great Britain, pp. 13–42.

García, J. M., Almansa, J. A., Sierra, J. M. G., 2012. Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial RIAI 9 (3), 205–218.

García-García, D., Valeriano-Medina, Y., Hernández, L., Martínez, A., 2012. Wave filtering for heading control of an auv based on passive observer. IJMS 41, 540–549.

Hegrenaes, O., Hallingstad, O., 2011. Model-aided ins with sea current estimation for robust underwater navigation. IEEE, OCEANIC ENGINEERING 36 (2), 316 – 337.

Hegrenaes, O., Hallingstad, O., Gade, K., 2007a. Towards model-aided navigation of underwater vehicles. Modeling, Identification and Control 28 (4), 10.

Hegrenaes, O., Hallingstad, O., Jalving, B., 2007b. A comparison of mathematical models for the hugin 4500 auv based on experimental data. In: IEEE International Symposium on Underwater Technology (UT’07). IEEE Xplore, Tokyo, Japan, pp. 558–567.

Jakuba, M. V., 2003. Modeling and control of an autonomous underwater vehicle with combined foil/thruster. Ph.D. thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

Kangsoo, K., Tamaki, U., 2002. 3-dimensional trajectory tracking control of an auv “r-one robot” considering current interaction. In: Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference. Kitakyushu, Japan.

LaPointe, C. E., 2006. Virtual long baseline (vlbl) autonomous underwater vehicle navigation using a single transponder. Master of science, Massachusetts Institute of Technology.

Martinez, A., Rodriguez, Y., Hernandez, L., Guerra, C., Sahli, H., 2010. Hardware and software architecture for auv based on low-cost sensors. In: 11th International Conference on Control, Automation, Robotics and Vision, ICARCV. IEEE Xplore, Singapore, pp. 1428 – 1433.

McEwen, R., Streitlien, K., 2006. Modeling and control of a variable-length auv. Technical report, Monterey Bay Aquarium Research Institute.

Morgado, M., Oliveira, P., Silvestre, C., Vasconcelos, J., 2007. Vehicle dynamics aiding technique for usbl/ins underwater navigation system. In: Longi, S., Vukic, Z. (Eds.), 7th Conference of Control Applications in Marine Systems. Vol. 7. IFAC, Bol, Croatia.

Petrich, J., 2009. Improved guidance, navigation, and control for autonomous underwater vehicles: Theory and experiment. Ph.D. thesis, Virginia Polytechnic Institute and State University.

Sangekar, M., Chitre, M., Beng Koay, T., 2008. Hardware architecture for a modular autonomous underwater vehicle starfish. In: OCEANS 2008. IEEE Xplore, Quebec, Canada, pp. 1–8.

Sanz, P. J., Prats, M., Ridao, P., Ribas, D., Oliver, G., Ortiz, A., 2010. Recent progress in the rauvi project. a reconfigurable autonomous underwater vehicle for intervention. In: 52th International Symposium ELMAR-2010. IEEE, Zadar, Croatia, pp. 471–474.

SNAME, 1950. Nomenclature for treating the motion of a submerged body through a fluid., 1–5.

Stutters, L., Liu, H., Tiltman, C., Brown, D. J., 2008. Navigation technologies for autonomous underwater vehicles. IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART C: APPLICATIONS AND REVIEWS 38 (4), 581–589.

Valeriano-Medina, Y., Martínez, A., Hernández, L., Sahli, H., Rodriguez, Y., Cañizares, J., 2012. Dynamic model for an autonomous underwater vehicle based on experimental data. Mathematical and Computer Modelling of Dynamical Systems, 1–26.

Willumsen, A. B., Hagen, O. K., Boge, P. N., 2007. Filtering depth measurements in underwater vehicles for improved seabed imaging. In: OCEANS 2007. IEEE, Aberdeen, Scotland, pp. 1–6.

Abstract Views

2897
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Model-Aided Navigation with Sea Current Estimation for an Autonomous Underwater Vehicle
Alain Martinez, Luis Hernandez, Hichem Sahli, Yunier Valeriano-Medina, Maykel Orozco-Monteagudo, Delvis Garcia-Garcia
International Journal of Advanced Robotic Systems  vol: 12  num.: 7  primera página: 103  año: 2015  
doi: 10.5772/60415



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912