Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas

Gilberto Reynoso Meza, Javier Sanchis, Xavier Blasco, Miguel Martínez

Resumen

Los controladores PID continúan siendo una solución fiable, robusta, práctica y sencilla para el control de procesos. Actualmente constituyen la primera capa de control de la gran mayoría de las aplicaciones industriales. De ahí que un número importante de trabajos de investigación se han orientado a mejorar su rendimiento y prestaciones. Las líneas de investigación en este campo van desde nuevos métodos de ajuste, pasando por nuevos tipos de estructura hasta metodologías de diseño integrales. Particularizando en el ajuste de parámetros, una de las formas de obtener una solución novedosa consiste en plantear un problema de optimización, el cual puede llegar a ser no-lineal, no-convexo y con restricciones. Dado que los algoritmos evolutivos han mostrado un buen desempeño para solucionar problemas complejos de optimización, han sido utilizados en diversas propuestas relacionadas con el ajuste de controladores PID. Este trabajo muestra un revisión de estas propuestas y las prestaciones obtenidas en cada caso. Así mismo, se identifican algunas tendencias y posibles líneas de trabajo futuras.

Palabras clave

Controlador PID; PID convencional; PID borroso; PID fraccionario; Algoritmos Evolutivos; Optimización

Texto completo:

PDF

Referencias

Algoul, S., Alam, M., Hossain, M., Majumder, M., 2011. Multi-objective optimal chemotherapy control model for cancer treatment. Medical and Biological Engineering and Computing 49, 51–65, 10.1007/s11517-010-0678-y.

Ang, K. H., Chong, G., Li, Y., july 2005. PID control system analysis, design, and technology. Control Systems Technology, IEEE Transactions on 13 (4), 559 – 576.

Åstrom, K., H ¨ agglund, T., 2001. The future of PID control. Control Engineering ¨ Practice 9 (11), 1163 – 1175.

Åstrom, K. J., H ¨ agglund, T., 2005. Advanced PID Control. ISA - The Instru- ¨ mentation, Systems, and Automation Society, Research Triangle Park, NC 27709.

Åstrom, K., Panagopoulos, H., H ¨ agglund, T., 1998. Design of PI controllers ¨ based on non-convex optimization. Automatica 34 (5), 585 – 601.

Avigad, G., Moshaiov, A., Brauner, N., june 2003. Towards a general tool for mechatronic design. In: Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on. Vol. 2. pp. 1035 – 1040 vol.2.

Ayala, H. V. H., dos Santos Coelho, L., 2012. Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications 39 (10), 8968 – 8974.

Behbahani, S., de Silva, C., feb. 2008. System-based and concurrent design of a smart mechatronic system using the concept of mechatronic design quotient (MDQ). Mechatronics, IEEE/ASME Transactions on 13 (1), 14 –21.

Beyer, H.-G., Sendhoff, B., 2007. Robust optimization - a comprehensive survey. Computer Methods in Applied Mechanics and Engineering 196 (33-34), 3190 – 3218.

Bingul, Z., Karahan, O., 2011. A fuzzy logic controller tuned with PSO for 2 dof robot trajectory control. Expert Systems with Applications 38 (1), 1017 – 1031.

Biswas, A., Das, S., Abraham, A., Dasgupta, S., 2009. Design of fractionalorder PIλDμ controllers with an improved differential evolution. Engineering Applications of Artificial Intelligence 22 (2), 343 – 350.

Blasco, X., Herrero, J., Sanchis, J., Martínez, M., 2008. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences 178 (20), 3908 – 3924.

Bonissone, P., Subbu, R., Lizzi, J., aug. 2009. Multicriteria decision making (mcdm): a framework for research and applications. Computational Intelligence Magazine, IEEE 4 (3), 48 –61.

Caballero, J. A., Grossmann, I. E., 2011. Una revisión del estado del arte en optimización. Revista Iberoamericana de Automática e Informática Industrial 4 (1), 5 – 23.

Coello, C., 2000. Handling preferences in evolutionary multiobjective optimization: a survey. In: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 1. pp. 30 –37 vol.1.

Coello, C. A. C., 2002. Theorical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer methods in applied mechanics and engineering (191), 1245 – 1287.

Coello Coello, C., feb. 2006. Evolutionary multi-objective optimization: A historical view of the field. Computational Intelligence Magazine, IEEE 1 (1), 28 – 36.

Coello, C., 2011. An introduction to multi-objective particle swarm optimizers. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (Eds.), Soft Computing in Industrial Applications. Vol. 96 of Advances in Intelligent and Soft Computing. Springer Berlin / Heidelberg, pp. 3–12, 10,1007/978− 3 − 642 − 20505 − 71.

Cordon, O., 2011. A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. International Journal of Approximate Reasoning 52 (6), 894 – 913.

Corne, D. W., Knowles, J. D., 2007. Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. GECCO ’07. ACM, New York, NY, USA, pp. 773 – 780.

Cruz, C., González, J., Pelta, D. A., 2011. Optimization in dynamic environments: a survey on problems, methods and measures. Soft Computing 15, 1427–1448.

Das, S., Maity, S., Qu, B.-Y., Suganthan, P., 2011. Real-parameter evolutionary multimodal optimization - a survey of the state-of-the-art. Swarm and Evolutionary Computation 1 (2), 71 – 88.

Das, S., Suganthan, P. N., 2010. Differential evolution: A survey of the state-ofthe-art. Evolutionary Computation, IEEE Transactions on PP (99), 1 –28.

Das, S., Suganthan, P., 2011. Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Tech. rep., Jadavpur university and Nanyang Technological University.

Deb, K., 2000. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186 (2-4), 311 – 338.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2), 124 – 141.

Dixon, R., Pike, A., may 2006. ALSTOM benchmark challenge II on gasifier control. Control Theory and Applications, IEE Proceedings - 153 (3), 254 – 261.

Eiben, A., Schippers, C., 1998. On evolutionary exploration and exploitation. Fundamenta Informaticae 35 (1), 35 – 50.

Elgammal, A., Sharaf, A., june 2012. Self-regulating particle swarm optimised controller for (photovoltaic-fuel cell) battery charging of hybrid electric vehicles. Electrical Systems in Transportation, IET 2 (2), 77 –89.

Elsayed, S., Sarker, R., Essam, D., june 2011. GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems. In: Evolutionary Computation (CEC), 2011 IEEE Congress on. pp. 1034 –1040.

Fazendeiro, P., de Oliveira, J., Pedrycz, W., sept. 2007. A multiobjective design of a patient and anaesthetist-friendly neuromuscular blockade controller. Biomedical Engineering, IEEE Transactions on 54 (9), 1667 –1678.

Fazzolar, M., Alcala, R., Nojima, Y., Ishibuchi, H., Herrera, F., feb. 2013. A ´ review of the application of multi-objective evolutionary fuzzy systems: Current status and further directions. IEEE Transactions on Fuzzy Systems 21 (1), 45–65.

Figueira, J., Greco, S., Ehrgott, M., 2005. Multiple criteria decision analysis: State of the art surveys. Springer international series.

Fleming, P., Purshouse, R., 2002. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice (10), 1223 – 1241.

Fonseca, C., Fleming, P., jan 1998a. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-I: A unified formulation. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 28 (1), 26 – 37.

Fonseca, C., Fleming, P., jan 1998b. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-II: Application example. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 28 (1), 38 – 47.

Gaing, Z.-L., june 2004. A particle swarm optimization approach for optimum design of PID controller in AVR system. Energy Conversion, IEEE Transactions on 19 (2), 384 – 391.

Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA.

Hajiloo, A., Nariman-zadeh, N., Moeini, A., 2012. Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties. Mechatronics 22 (6), 788 – 801.

Hansen, N., 2006. The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (Eds.), Towards a new evolutionary computation. Advances on estimation of distribution algorithms. Springer, pp. 75 – 102.

Harik, G., Lobo, F., Goldberg, D., nov 1999. The compact genetic algorithm. Evolutionary Computation, IEEE Transactions on 3 (4), 287 –297.

Herreros, A., Baeyens, E., Perán, J. R., 2002. Design of PID-type controllers using multiobjective genetic algorithms. ISA Transactions 41 (4), 457 – 472.

Holland, J. H., 1975. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U. Michigan Press, Oxford, England.

Huang, L., Wang, N., Zhao, J.-H., 2008. Multiobjective optimization for controller design. Acta Automatica Sinica 34 (4), 472 – 477.

Hung, M.-H., Shu, L.-S., Ho, S.-J., Hwang, S.-F., Ho, S.-Y., march 2008. A novel intelligent multiobjective simulated annealing algorithm for designing robust PID controllers. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 38 (2), 319 –330.

Inselberg, A., 1985. The plane with parallel coordinates. The Visual Computer 1, 69–91.

Iruthayarajan, M. W., Baskar, S., 2009. Evolutionary algorithms based design of multivariable PID controller. Expert Systems with applications 3 (36), 9159 – 9167.

Ishibuchi, H., Tsukamoto, N., Nojima, Y., june 2008. Evolutionary manyobjective optimization: A short review. In: Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on. pp. 2419 –2426.

Jiachuan, W., Zhun, F., Terpenny, J., Goodman, E., may 2005. Knowledge interaction with genetic programming in mechatronic systems design using bond graphs. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 35 (2), 172 – 182.

Juang, J.-G., Huang, M.-T., Liu, W.-K., sept. 2008. PID control using presearched genetic algorithms for a mimo system. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 38 (5), 716 –727.

Kamath, S., George, V. I., Vidyasagar, S., 2009. A comparative study of different types of controllers used for blood glucose regulation system. The Canadian Journal of Chemical Engineering 87 (5), 812 – 817.

Kaveh, P., Shtessel, Y. B., 2008. Blood glucose regulation using higher-order sliding mode control. International Journal of Robust and Nonlinear Control 18 (4-5), 557 – 569.

Kennedy, J., Eberhart, R., nov/dec 1995. Particle swarm optimization. In: Neural Networks, 1995. Proceedings., IEEE International Conference on. Vol. 4. pp. 1942 –1948 vol.4.

Kollat, J. B., Reed, P., 2007. A framework for visually interactive decisionmaking and design using evolutionary multi-objective optimization (VIDEO). Environmental Modelling & Software 22 (12), 1691 – 1704.

Konak, A., Coit, D. W., Smith, A. E., 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91 (9), 992 – 1007, special Issue - Genetic Algorithms and Reliability.

Koza, J., Keane, M., Streeter, M., may-jun 2003. What’s AI done for me lately genetic programming’s human-competitive results. Intelligent Systems, IEEE 18 (3), 25 – 31.

Koza, J., Poli, R., 2005. Genetic programming. In: Burke, E. K., Kendall, G. (Eds.), Search Methodologies. Springer US, pp. 127–164, 10.1007/0-387- 28356-0 5.

Lamanna, R., Vega, P., Revollar, S., Álvarez, H., 2009. Diseño simultáneo de proceso y control de una torre sulfitadora de jugo de caña de azúcar. Revista Iberoamericana de Automática e Informática Industrial 6 (3), 32 – 43.

Lee, C.-H., Chang, F.-K., 2010. Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Systems with Applications 37 (12), 8871 – 8878.

Li, Y., Ang, K. H., Chong, G., feb. 2006. Pid control system analysis and design. Control Systems, IEEE 26 (1), 32 – 41.

Lin, C.-M., Li, M.-C., Ting, A.-B., Lin, M.-H., 2011. A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm. International Journal of Machine Learning and Cybernetics 2, 225–234.

Lotov, A., Miettinen, K., 2008. Visualizing the Pareto frontier. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Multiobjective Optimization. Vol. 5252 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 213–243.

Lozano, M., Molina, D., Herrera, F., 2011. Soft Computing: Special Issue on scalability of evolutionary algorithms and other metaheuristics for largescale continuous optimization problems. Vol. 15. Springer-Verlag.

Luyben, W. L., 1986. Simple method for tuning SISO controllers in multivariable systems. Industrial and Engineering Chemistry Process Design (25), 654 – 660.

Mallipeddi, R., Suganthan, P., 2009. Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization. Tech. rep., Nanyang Technological University, Singapore.

Marler, R., Arora, J., 2004. Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization (26), 369 – 395.

Mattson, C. A., Messac, A., 2005. Pareto frontier based concept selection under uncertainty, with visualization. Optimization and Engineering 6, 85–115, 10.1023/B:OPTE.0000048538.35456.45.

Menhas, M. I., Fei, M., Wang, L., Qian, L., 2012a. Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system. Energy Conversion and Management 54 (1), 67 – 80.

Menhas, M. I., Wang, L., Fei, M., Pan, H., 2012b. Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design. Expert Systems with Applications 39 (4), 4390 – 4401.

Messac, A., 1996. Physical programming: effective optimization for computational design. AIAA Journal 34 (1), 149–158.

Mezura-Montes, E., Coello, C. A. C., December 2011. Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation 1 (4), 173 – 194.

Mezura-Montes, E., Reyes-Sierra, M., Coello, C., 2008. Multi-objective optimization using differential evolution: A survey of the state-of-the-art. Advances in Differential Evolution (SCI 143), 173 – 196.

Miettinen, K. M., 1998. Nonlinear multiobjective optimization. Kluwer Academic Publishers.

Mininno, E., Neri, F., Cupertino, F., Naso, D., feb. 2011. Compact differential evolution. Evolutionary Computation, IEEE Transactions on 15 (1), 32 –54.

Oh, S.-K., Kim, W.-D., Pedrycz, W., 2012. Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights. Engineering Applications of Artificial Intelligence 25 (3), 520 – 532.

Pan, I., Das, S., Gupta, A., 2011. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay. ISA Transactions 50 (1), 28 – 36.

Podlubny, I., jan. 1999. Fractional-order systems and PIλDμ-controllers. Automatic Control, IEEE Transactions on 44 (1), 208 –214.

Rao, J. S., Tiwari, R., 2009. Design optimization of double-acting hybrid magnetic thrust bearings with control integration using multi-objective evolutionary algorithms. Mechatronics 19 (6), 945 – 964.

Reynoso-Meza, G., Blasco, X., Sanchis, J., 2009. Diseño multiobjetivo de controladores PID para el benchmark de control 2008-2009. Revista Iberoamericana de Automática e Informática Industrial 6 (4), 93 – 103.

Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J., september 2011a. Handling control engineer preferences: Getting the most of PI controllers. In: Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference on. pp. 1–8.

Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J., june 2011b. Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: Evolutionary Computation (CEC), 2011 IEEE Congress on. pp. 1551 –1556.

Reynoso-Meza, G., Blasco, X., Sanchis, J., March 2012a. Optimización evolutiva multi-objetivo y seleccion multi-criterio para la ingeniería de control. In: X Simposio CEA de Ingeniería de Control.

Reynoso-Meza, G., García-Nieto, S., Sanchis, J., Blasco, X., 2012b. Controller tuning using multiobjective optimization algorithms: a global tuning framework. IEEE Transactions on Control Systems Article in press.

Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., 2012c. Multiobjective evolutionary algortihms for multivariable PI controller tuning. Expert Systems with Applications 39, 7895 – 7907.

Reynoso-Meza, G., Blasco, X., Sanchis, J., Herrero, J. M., 2013. Comparison of design concepts in multi-criteria decision-making using level diagrams. Information Sciences 221 (0), 124 – 141.

Romero-Pérez, J. A., Arrieta, O., Padula, F., Reynoso-Meza, G., García-Nieto, S., Balaguer, P., 2012. Estudio comparativo de algoritmos de auto-ajuste de controladores PID. resultados del benchmark 2010-2011 del grupo de ingeniería de control de cea. Revista Iberoamericana de Automática e Informática Industrial 9 (2), 182 – 193.

Roy, R., Hinduja, S., Teti, R., 2008. Recent advances in engineering design optimisation: Challenges and future trends. CIRP Annals - Manufacturing Technology 57 (2), 697 – 715.

Sanchis, J., Martínez, M. A., Blasco, X., Reynoso-Meza, G., 2010. Modelling preferences in multiobjective engineering design. Engineering Applications of Artificial Intelligence 23, 1255 – 1264.

Santana-Quintero, L., Montaño, A., Coello, C., 2010. A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Tenne, Y., Goh, C.-K. (Eds.), Computational Intelligence in Expensive Optimization Problems. Vol. 2 of Adaptation Learning and Optimization. Springer Berlin Heidelberg, pp. 29–59.

Saridakis, K., Dentsoras, A., 2008. Soft computing in engineering design - a review. Advanced Engineering Informatics 22 (2), 202 – 221, network methods in engineering.

Shi, L., Rasheed, K., 2010. A survey of fitness approximation methods applied in evolutionary algorithms. In: Tenne, Y., Goh, C.-K. (Eds.), Computational Intelligence in Expensive Optimization Problems. Vol. 2 of Adaptation Learning and Optimization. Springer Berlin Heidelberg, pp. 3–28.

Sidhartha, Panda, 2011. Multi-objective PID controller tuning for a facts-based damping stabilizer using non-dominated sorting genetic algorithm-II. International Journal of Electrical Power and Energy Systems 33 (7), 1296 – 1308.

Skogestad, S., 2003. Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control 13 (4), 291 – 309.

Stewart, G., Samad, T., 2011. Cross-application perspectives: Application and market requirements. In: Samad, T., Annaswamy, A. (Eds.), The Impact of Control Technology. IEEE Control Systems Society, pp. 95 – 100.

Storn, R., Price, K., 1997. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341 – 359.

Tan, W., Liu, J., Fang, F., Chen, Y., 2004. Tuning of PID controllers for boilerturbine units. ISA Transactions 43 (4), 571 – 583.

Tan, W., Lu, F., Loh, A., Tan, K., 2005. Modeling and control of a pilot pH plant using genetic algorithm. Engineering Applications of Artificial Intelligence 18 (4), 485 – 494.

Tavakoli, S., Griffin, I., Fleming, P. J., September 2007. Multi-objective optimization approach to the PI tuning problem. In: Proceedings of the IEEE congress on evolutionary computation (CEC2007). pp. 3165 – 3171.

Vilanova, R., Alfaro, V. M., 2011. Control pid robusto: una visión panorámica. Revista Iberoamericana de Automática e Informática Industrial 8 (3), 141 – 158.

Xue, Y., Li, D., Gao, F., 2010. Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem. Control Engineering Practice 18 (1), 67 – 76.

Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M., 2009. Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice 17 (12), 1380 – 1387.

Zhang, J., Zhuang, J., Du, H., Wang, S., 2009. Self-organizing genetic algorithm based tuning of PID controllers. Information Sciences 179 (7), 1007 – 1018.

Zhang, Q., Li, H., december 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. Evolutionary Computation, IEEE Transactions on 11 (6), 712 – 731.

Zhao, S.-Z., Iruthayarajan, M. W., Baskar, S., Suganthan, P., 2011. Multiobjective robust PID controller tuning using two lbests multi-objective particle swarm optimization. Information Sciences 181 (16), 3323 – 3335.

Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., Zhang, Q., 2011. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1 (1), 32 – 49.

Abstract Views

1154
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Physical programming for preference driven evolutionary multi-objective optimization
Gilberto Reynoso-Meza, Javier Sanchis, Xavier Blasco, Sergio García-Nieto
Applied Soft Computing  vol: 24  primera página: 341  año: 2014  
doi: 10.1016/j.asoc.2014.07.009



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912