Un Banco de Pruebas Remoto para Experimentación en Robótica Ubicua

Autores/as

  • Adrián Jiménez González Universidad de Sevilla
  • José Ramiro Martínez de Dios Universidad de Sevilla
  • Alberto de San Bernabé Universidad de Sevilla
  • Gabriel Núñez Universidad de Sevilla
  • Aníbal Ollero Universidad de Sevilla

DOI:

https://doi.org/10.1016/j.riai.2013.09.007

Palabras clave:

Bancos de pruebas, robótica ubicua, redes inalámbricas de sensores

Resumen

La escasez de herramientas experimentales adecuadas ha sido señalada como un factor crítico en el desarrollo de la robótica ubícua. Este artículo describe un banco de pruebas remoto para experimentación en robótica ubicua integrando robots con redes inalámbricas de sensores. El banco de pruebas está compuesto por 5 robots Pioneer 3-AT, por una red de cámaras y por una red inalámbrica de sensores, todos ellos equipados con una amplia variedad de sensores. La arquitectura del banco de pruebas permite una gran diversidad de esquemas de cooperación entre sus elementos abstrayendo sus particularidades y capacidades sensoriales, computacionales y de comunicaciones. Permite ejecutar experimentos con distintos grados de descentralización. El banco de pruebas, instalado en la Escuela Técnica Superior de Ingeniería de la Universidad de Sevilla, es abierto y hace posible el acceso de forma remota mediante una interfaz gráfica intuitiva.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Adrián Jiménez González, Universidad de Sevilla

Grupo de Robótica, Visión y Control. Departamento de Ingeniería de Sistemas y Automática. Escuela Técnica Superior de Ingeniería

José Ramiro Martínez de Dios, Universidad de Sevilla

Grupo de Robótica, Visión y Control. Departamento de Ingeniería de Sistemas y Automática. Escuela Técnica Superior de Ingeniería

Alberto de San Bernabé, Universidad de Sevilla

Grupo de Robótica, Visión y Control. Departamento de Ingeniería de Sistemas y Automática. Escuela Técnica Superior de Ingeniería

Gabriel Núñez, Universidad de Sevilla

Grupo de Robótica, Visión y Control. Departamento de Ingeniería de Sistemas y Automática. Escuela Técnica Superior de Ingeniería

Aníbal Ollero, Universidad de Sevilla

Grupo de Robótica, Visión y Control. Departamento de Ingeniería de Sistemas y Automática. Escuela Técnica Superior de Ingeniería

Citas

Acevedo, J., Arrúe, B., Maza, I., Ollero, A., november 2011. Optimal distribution of multiple robots for perimeter surveillance. In: 3rd National Conference on Experimental Robotics. pp. 228 – 232.

Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E., aug 2002. A survey on sensor networks. IEEE Communications Magazine 40 (8), 102 – 114.

Albesa, J., Casas, R., Penella, M., Gasulla, M., oct. 2007. Realnet: An environmental wsn testbed. In: Intl. Conf. on Sensor Technologies and Applications, SensorComm2007. pp. 502 –507.

Atay, N., Bayazit, B., january 2009. Mobile wireless sensor network connectivity repair with k-redundancy. In: Algorithmic Foundation of Robotics VIII. Vol. 57 of Springer Tracts in Advanced Robotics. Springer Berlin / Heidelberg, pp. 35–49.

Barbosa, M., Bernardino, A., Figueira, D., Gaspar, J., Gonçalves, N., Lima, P., Moreno, P., Pahliani, A., Santos-Victor, J., Spaan, M., Sequeira, J., oct. 2009. Isrobotnet: A testbed for sensor and robot network systems. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. pp. 2827 –2833.

Boice, J., Lu, X., Margi, C., Stanek, G., Zhang, G., Obraczka, K., 2006. Meerkats: A power-aware, self-managing wireless camera network for wide area monitoring.

Brundage, H., Cooney, L., Huo, E., Lichter, H., Oyebode, O., Sinha, P., Stanway, M., Stefanov-Wagner, T., Stiehl, K., Walker, D., sept. 2006. Design of an rov to compete in the 5th annual mate rov competition and beyond. In: OCEANS. pp. 1 –5.

Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas, G., Pfisterer, D., 2010. Wisebed: An open large-scale wireless sensor network testbed. In: Sensor Applications, Experimentation, and Logistics. Vol. 29 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecom. Engineering. Springer Berlin Heidelberg, pp. 68–87.

Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., Sukhatme, G., 2006. Deployment and connectivity repair of a sensor net with a flying robot. In: Experimental Robotics IX. Vol. 21 of Springer Tracts in Advanced Robotics. Springer Berlin / Heidelberg, pp. 333–343.

De, P., Raniwala, A., Krishnan, R., Tatavarthi, K., Modi, J., Syed, N. A., Sharma, S., Chiueh, T.-c., 2006. Mint-m: an autonomous mobile wireless experimentation platform. In: 4th Intl. Conf. on Mobile Systems, Applications and Services. ACM, New York, NY, USA, pp. 124–137.

Deloach, S. A., Matson, E. T., Li, Y., 2003. Exploiting agent oriented software engineering in cooperative robotics search and rescue. Intl. Journal of Pattern Recognition and Artificial Intelligence 17 (5), 817 – 835.

Durham, J., Bullo, F., sept. 2008. Smooth nearness-diagram navigation. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. pp. 690 –695.

Fox, D., Burgard, W., Dellaert, F., Thrun, S., 1999. Monte carlo localization: efficient position estimation for mobile robots. In: AAAI 16th Conf. on Artificial Intelligence and 11th Conf. on Innovative Applications of Artificial Intelligence. pp. 343–349.

Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P., November 2009. Collection Tree Protocol. In: 7th ACM Conference on Embedded Networked Sensor Systems.

Handziski, V., Kopk ¨ e, A., Willig, A., Wolisz, A., 2006. Twist: a scalable and reconfigurable testbed for wireless indoor experiments with sensor networks. In: 2nd ACM Intl. Workshop on Multi-hop ad hoc Networks: from theory to reality. New York, NY, pp. 63–70.

Hoffmann, G., Rajnarayan, D., Waslander, S., Dostal, D., Jang, J., Tomlin, C., oct. 2004. The stanford testbed of autonomous rotorcraft for multiagent control. In: 23rd Digital Avionics Systems Conf. Vol. 2. pp. 12.E.4 – 121–10.

How, J., Bethke, B., Frank, A., Dale, D., Vian, J., april 2008. Real-time indoor autonomous vehicle test environment. IEEE Control Systems 28 (2), 51 –64.

Jin, Z., Waydo, S., Wildanger, E., Lammers, M., Scholze, H., Foley, P., Held, D., Murray, R., Jul. 2004. Mvwt-ii: the second generation caltech multi-vehicle wireless testbed. In: American Control Conf. Vol. 6. pp. 5321 –5326.

Johnson, D., Stack, T., Fish, R., Flickinger, D. M., Stoller, L., Ricci, R., Lepreau, J., april 2006. Mobile emulab: A robotic wireless and sensor network testbed. In: 25th IEEE Intl. Conf. on Computer Communications. pp. 1 –12.

Kulkarni, P., Ganesan, D., Shenoy, P., Lu, Q., 2005. Senseye: a multi-tier camera sensor network. In: 13th annual ACM international conference on Multimedia. MULTIMEDIA ’05. ACM, New York, NY, USA, pp. 229–238. DOI: 10.1145/1101149.1101191

Li, Y. Y., Parker, L., april 2008. Intruder detection using a wireless sensor network with an intelligent mobile robot response. In: IEEE Southeastcon. pp. 37 –42.

Martínez-de Dios, J., Lferd, K., de San Bernabe, A., Núñez, G., Torres González, A., Ollero, A., 2012. Cooperation between uas and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent and Robotic Systems, 1 – 18.

Maza, I., Caballero, F., Capitán, J., Martínez-de Dios, J., Ollero, A., 2011. Experimental results in multiuav coordination for disaster management and civil security applications. Journal of Intelligent & Robotic Systems 61, 563– 585.

Michael, N., Fink, J., Kumar, V., march 2008. Experimental testbed for large multirobot teams. IEEE Robotics Automation Magazine 15 (1), 53 –61.

Miller, D., Seanz-Otero, A., Wertz, J., Chen, A., Berkowski, G., Brodel, C., Carlson, S., Carpenter, D., Chen, S., january 2000. Spheres - a testbed for long duration satellite formation flying in micro-gravity conditions. In: AAS/AIAA Space Flight Mechanics Meeting. pp. 167 – 179.

Popa, D. O., Lewis, F. L., 2008. Algorithms for robotic deployment of wsn in adaptive sampling applications. In: Wireless Sensor Networks and Applications. Signals and Communication Technology. Springer US, pp. 35–64.

Rensfelt, O., Hermans, F., Gunningberg, P., Larzon, L.-Å., Björnemo, E., 2011. Repeatable experiments with mobile nodes in a relocatable wsn testbed. The Computer Journal 54 (12), 1973–1986.

Riggs, T., Inanc, T., Zhang, W., may 2010. An autonomous mobile robotics testbed:construction, validation, and experiments. IEEE Transactions on Control Systems Technology 18 (3), 757–766.

Saffiotti, A., Broxvall, M., 2005. Peis ecologies: ambient intelligence meets autonomous robotics. In: Joint Conf. on Smart Objects and Ambient Intelligence: innovative context-aware services: usages and technologies. ACM, New York, NY, USA, pp. 277–281.

Shah, R. C., Roy, S., Jain, S., Brunette, W., 2003. Data mules: modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks 1 (2-3), 215 – 233.

Sichitiu, M., Ramadurai, V., oct. 2004. Localization of wireless sensor networks with a mobile beacon. In: IEEE Intl. Conf. on Mobile Ad-hoc and Sensor Systems. pp. 174 – 183.

Stubbs, A., Vladimerou, V., Fulford, A., King, D., Strick, J., Dullerud, G., june 2006. Multivehicle systems control over networks: a hovercraft testbed for networked and decentralized control. IEEE Control Systems 26 (3), 56 – 69.

Tseng, Y.-C., Wang, Y.-C., Cheng, K.-Y., Hsieh, Y.-Y., june 2007. imouse: An integrated mobile surveillance and wireless sensor system. Computer 40 (6), 60 –66.

Ulrich, I., Borenstein, J., may 1998. Vfh+: reliable obstacle avoidance for fast mobile robots. In: IEEE Intl. Conf. on Robotics and Automation. Vol. 2. pp. 1572 –1577.

Descargas

Cómo citar

Jiménez González, A., Martínez de Dios, J. R., de San Bernabé, A., Núñez, G. y Ollero, A. (2014) «Un Banco de Pruebas Remoto para Experimentación en Robótica Ubicua», Revista Iberoamericana de Automática e Informática industrial, 11(1), pp. 68–79. doi: 10.1016/j.riai.2013.09.007.

Número

Sección

Artículos