Control predictor con ponderación de retardos: análisis de prestaciones y robustez ante retardo variable

Antonio González, Antonio Sala

Resumen

Los controladores basados en predictor, en particular los obtenidos por métodos de asignación finita de espectro (también conocido como método de reducción), permiten abordar el control por realimentación del estado de sistemas con retardos constantes y conocidos a partir de un modelo equivalente transformado sin retardo. Sin embargo, si el retardo es variable o existen incertidumbres en el modelo del proceso no es posible compensar su efecto de forma exacta. Este trabajo propone utilizar un predictor con múltiples retardos ponderados, con unos pesos a determinar según un algoritmo iterativo. Con ello se probará que, dado un controlador ya diseñado para un proceso sin retardo, la estructura ponderada propuesta consigue mejores prestaciones y robustez que los predictores de horizonte único.

Palabras clave

Retardo variable con el tiempo; Asignación Finita de Espectro; Método de reducción; Desigualdad matricial lineal

Texto completo:

PDF

Referencias

Artstein, Z., 1982. Linear systems with delayed control: A reduction. IEEE Transactions on Automatic Control 27 (4), 869–879.

Boukas, E., 2006. Discrete-time systems with time-varying time delay: stability and stabilizability. Mathematical Problems in Engineering 2006.

Caballero, J., Grossmann, I., 2007. Una revision del estado del arte en optimiza- ´ cion. ´ Revista Iberoamericana de Automatica ´ e Informatica Industrial ´ 4 (1), 5–23.

De Souza, C., Goodwin, G., Mayne, D., Palaniswami, M., 1988. An adaptive control algorithm for linear systems having unknown time delay. Automatica 24 (3), 327–341.

Di Palma, F., Magni, L., 2004. A multi-model structure for model predictive control. Annual Reviews in Control 28 (1), 47–52.

Du, D., Jiang, B., Zhou, S., 2008. Delay-dependent robust stabilisation of uncertain discrete-time switched systems with time-varying state delay. International Journal of Systems Science 39 (3), 305–313.

Gao, H., Chen, T., 2007. New results on stability of discrete-time systems with time-varying state delay. IEEE Transactions on Automatic Control 52 (2), 328–334.

Gao, H., Chen, T., Lam, J., 2008. A new delay system approach to networkbased control. Automatica 44 (1), 39–52.

Gao, H., Lam, J., Wang, C., Wang, Y., 2004. Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proceedings Control Theory and Applications 151 (6), 691.

Garcia, C., Prett, D. M., Morari, M., 1989. Model predictive control: theory and practice - a survey. Automatica 25 (3), 335–348.

Garcia, P., Castillo, P., Lozano, R., Albertos, P., 2006. Robustness with respect to delay uncertainties of a predictor observer based discrete-time controller. In: Proceedings of the 45th IEEE Conference on Decision and Control.

Gonzalez, A., Garcia, P., Albertos, P., Castillo, P., Lozano, R., 2012a. Robustness of a discrete-time predictor-based controller for time-varying measurement delay. Control Engineering Practice 20 (2), 102–110.

Gonzalez, A., Sala, A., Albertos, P., 2012b. Predictor-based stabilization of discrete time-varying input-delay systems. Automatica 48 (2), 454–457.

Gonzalez, A., Sala, A., Garcia, P., Albertos, P., 2013a. Robustness analysis of discrete predictor-based controllers for input-delay systems. International Journal of System Science 44 (2), 232–239.

Gonzalez, A., Sala, A., Sanchis, R., 2013b. LK stability analysis of predictorbased controllers for discrete-time systems with time-varying actuator delay. System & Control Letters 62 (9), 764–769.

Goodwin, G., Sin, K., 1984. Adaptive Filtering Prediction and Control. Prentice-Hall, Englewood Cliffs, NJ.

Guangdeng, Z., Linlin, H., Hongyong, Y., 2009. Further results concerning delay-dependent H∞ control for uncertain discrete-time systems with timevarying delay. Mathematical Problems in Engineering 2009.

Hagglund, T., 1996. An industrial dead-time compensating PI controller. Control Engineering Practice 4 (6), 749–756.

Hetel, L., Daafouz, J., Iung, C., 2008. Equivalence between the LyapunovKrasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems. Nonlinear Analysis: Hybrid Systems 2 (3), 697–705.

Liu, X., Martin, R., Wu, M., Tang, M., 2006. Delay-dependent robust stabilisation of discrete-time systems with time-varying delay. IEE Proceedings Control Theory and Applications 153 (6), 689.

Lozano, R., Castillo, P., Garcia, P., Dzul, A., 2004. Robust prediction-based control for unstable delay systems: Application to the yaw control of a minihelicopter. Automatica 40 (4), 603–612.

Manitius, A., Olbrot, A., 1979. Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control 24 (4), 541–552.

Mao, W., Chu, J., 2009. D-stability and d-stabilization of linear discrete timedelay systems with polytopic uncertainties. Automatica 45 (3), 842–846.

Martínez, M., Sanchís, J., Blasco, X., 2006. Algoritmos genéticos aplicados al diseño de controladores robustos. Revista Iberoamericana de Automática e Informática Industrial 3 (1), 39–51.

Michiels, W., Niculescu, S., 2003. On the delay sensitivity of Smith predictors. International Journal of Systems Science 34 (8), 543–551.

Nilsson, J., 1998. Real-time control systems with delays. Ph.D. dissertation, department of Automatic Control, Lund, Sweden: Lund Institute of Technology.

Normey-Rico, J., Camacho, E., 2007. Control of dead-time processes. Springer Verlag.

Normey-Rico, J., Camacho, E., 2009. Unified approach for robust dead-time compensator design. Journal of Process Control 19 (1), 38–47.

Normey-Rico, J., Garcia, P., Gonzalez, A., 2012. Robust stability analysis of filtered smith predictor for time-varying delay processes. Journal of Process Control 22 (10), 1975–1984.

Oliveira, V., Cossi, L., Teixeira, M., Silva, A., 2009. Synthesis of pid controllers for a class of time delay systems. Automatica 45 (7), 1778–1782.

Palmor, Z., 1996. Time-delay compensation smith predictor and its modifications. The Control Handbook 1, 224–229.

Pan, Y., Marquez, H., Chen, T., 2006. Stabilization of remote control systems with unknown time varying delays by LMI techniques. International Journal of Control 79 (7), 752–763.

Peng, C., Yue, D., Sun, J., 2004. The study of Smith prediction controller in NCS based on time-delay identification. In: Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. Vol. 3. IEEE, pp. 1644– 1648.

Richard, J., 2003. Time-delay systems: an overview of some recent advances and open problems. Automatica 39 (10), 1667–1694.

Salt, J., Casanova, V., Cuenca, A., Pizá, R., 2008. Sistemas de control basados en red modelado y diseño de estructuras de control. Revista Iberoamericana de Automática e Informática Industrial 5 (3), 5–20.

Silva, G., Datta, A., Bhattacharyya, S., 2005. PID controllers for time-delay systems. Birkhauser, Boston.

Smith, O., 1957. Closer Control of loops with dead time. Chemical Engineering Progress 53 (5), 217–219.

Valter, J., et al., 2008. Robust stabilization of discrete-time systems with timevarying delay: an LMI approach. Mathematical Problems in Engineering 2008.

Wang, Q., Lee, T., Tan, K., 1998. Finite spectrum assignment for time-delay systems. Springer Verlag.

Yong, H., Min, W., Qinglong, H., Jinhua, S., 2008. Delay-dependent H∞ control of linear discrete-time systems with an interval-like time-varying delay. International Journal of Systems Science 39 (4), 427–436.

Yue, D., Han, Q., 2005. Delayed feedback control of uncertain systems with time-varying input delay. Automatica 41 (2), 233–240.

Zhang, B., Xu, S., Zou, Y., 2008. Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica 44 (11), 2963–2967.

Zhong, Q., 2006. Robust control of time-delay systems. Springer Verlag.

Abstract Views

609
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants
Aitor J. Garrido, Erlantz Otaola, Izaskun Garrido, Jon Lekube, Francisco J. Maseda, Pedro Liria, Julien Mader
Mathematical Problems in Engineering  vol: 2015  primera página: 1  año: 2015  
doi: 10.1155/2015/727982



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912