Hibridación de sistemas borrosos para el modelado y control

José Manuel Andújar, Antonio Javier Barragán

Resumen

La lógica borrosa ha conseguido en un breve periodo de tiempo revolucionar la tecnología mediante la conjunción de los fundamentos matemáticos, la lógica y el razonamiento. Su inherente capacidad de hibridación y su robustez intrínseca han permitido a la lógica borrosa cosechar numerosos éxitos en el campo del modelado y el control de sistemas, impulsando el control inteligente. En este artículo se estudian los sistemas borrosos híbridos más usuales y su importancia en el campo del modelado y control de sistemas dinámicos. El trabajo presenta varios ejemplos que ilustran, para diferentes técnicas de hibridación, cómo éstas potencian las cualidades innatas de la lógica borrosa para el modelado y control de sistemas dinámicos. Así mismo, se incluyen más de ciento cincuenta referencias bibliográficas que permitirán al lector interesado profundizar en el campo de la lógica borrosa, y más concretamente en el de sus técnicas de hibridación con aplicación al modelado y control borroso.

Palabras clave

Algoritmos bioinspirados; control borroso; control inteligente; modelado borroso; redes neuronales; sistemas borrosos; sistemas híbridos

Texto completo:

PDF

Referencias

Al-Hadithi, B. M., Barragán, A. J., Andújar, J. M., Jiménez, A., Oct. 2013. Variable structure control with chattering elimination and guaranteed stability for a generalized t-s model. Applied Soft Computing 13 (12), 4802–4812. DOI: http://dx.doi.org/10.1016/j.asoc.2013.07.026

Al-Hadithi, B. M., Matía, F., Jiménez, A., Apr. 2007. Análisis de estabilidad de sistemas borrosos. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 4 (2), 7–25.

Albertos, P., Sala, A., Jul. 2004. Control borroso. Una metodología integradora. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 1 (2), 22–31.

Altrock, C. v., 1994. Fuzzy logic technologies in automotive engineering. En: Embedded systems conference. Vol. 2. pp. 407–422.

Altrock, C. v., Krause, B., Zimmermann, H. J., 1992. Advanced fuzzy logic control technologies in automotive applications. En: IEEE Conference on Fuzzy Systems. pp. 831–842.

Anderson, J. A., Silverstein, J. W., Ritz, S. A., Jones, R. S., Sep. 1977. Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psychological Review 84 (5), 413–451. DOI: 10.1037/0033-295X.84.5.413

Andújar, J. M., Aroba, J., Torre, M. L. d. l., Grande, J. A., Jan. 2006a. Contrast of evolution models for agricultural contaminants in ground waters by means of fuzzy logic and data mining. Environmental Geology 49 (3), 458–466. DOI: 10.1007/s00254-005-0103-2

Andújar, J. M., Barragán, A. J., Sep. 2005. A methodology to design stable nonlinear fuzzy control systems. Fuzzy Sets and Systems 154 (2), 157–181. DOI: 10.1016/j.fss.2005.03.006

Andújar, J. M., Barragán, A. J., Jul. 2010. A formal methodology for the analysis and design of nonlinear fuzzy control systems. En: Fuzzy Systems (FUZZ), 2010 IEEE International Conference on. No. 1. Barcelona, Spain, pp. 66–74. DOI: 10.1109/FUZZY.2010.5583980

Andújar, J. M., Barragán, A. J., Córdoba, J. M., Fernández, I., Jan. 2006b. Diseño de sistemas de control borroso: modelado de la planta. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 3 (1), 75–81.

Andújar, J. M., Barragán, A. J., Gegúndez, M. E., Oct. 2009. A general and formal methodology for designing stable nonlinear fuzzy control systems. IEEE Transactions on Fuzzy Systems 17 (5), 1081–1091. DOI: 10.1109/TFUZZ.2009.2021984

Andújar, J. M., Barragán, A. J., Gegúndez, M. E., Maestre, M., 2007. Control borroso multivariable basado en heurística. un caso práctico: Grúa porta contenedortes. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 4 (2), 81–89+123.

Andújar, J. M., Bravo, J. M., Mar. 2005. Multivariable fuzzy control applied to the physical-chemical treatment facility of a cellulose factory. Fuzzy Sets and Systems 150 (3), 475–492. DOI: 10.1016/j.fss.2004.03.023

Andújar, J. M., Bravo, J. M., Peregrín, A., Dec. 2004. Stability analysis and synthesis of multivariable fuzzy systems using interval arithmetic. Fuzzy Sets and Systems 148 (3), 337–353. DOI: 10.1016/j.fss.2004.01.008

Angelov, P., Buswell, R., Oct. 2002. Identification of evolving fuzzy rule-based models. IEEE Transactions on Fuzzy Systems 10 (5), 667–677. DOI: 10.1109/TFUZZ. 2002.803499.

Angelov, P., Xydeas, C., Filev, D., july 2004. On-line identification of MIMO evolving Takagi–Sugeno fuzzy models. En: Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on. Vol. 1. pp. 55–60. DOI: 10.1109/FUZZY. 2004.1375687

Angelov, P. P., 2002. Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems. Vol. 92 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Springer, New York.

Angelov, P. P., Filev, D. P., Feb. 2004. An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 34 (1), 484–498. DOI: 10.1109/TSMCB. 2003.817053

Aracil, J., 2000. Stability Issues in Fuzzy Control. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Aracil, J., Ollero, A., Garcia-Cerezo, A., Sep. 1989. Stability indices for the global analysis of expert control systems. IEEE Transactions on Systems, Man, and Cybernetics 19 (5), 998–1007. DOI: 10.1109/21.44014

Aroba, J., Grande, J. A., Andújar, J. M., De La Torre, M. L., Riquelme, J. C., Sep. 2007. Application of fuzzy logic and data mining techniques as tools for qualitative interpretation of acid mine drainage processes. Environmental Geology 53 (1), 135–145. DOI: 10.1007/s00254-006-0627-0

Assilian, S., 1974. Artificial intelligence in the control of real dynamical systems. Ph.D. thesis, Queen Mary College, London University.

Babuška, R., Mar. 1995. Fuzzy modeling – a control engineering perspective. En: Proceedings of FUZZ-IEEE/IFES’95. Vol. 4. Yokohama, Japan, pp. 1897–1902. DOI: 10.1109/FUZZY.1995.409939

Barragán, A. J., 2009. Síntesis de sistemas de control borroso estables por diseño. Universidad de Huelva. URL: http://uhu.es/antonio.barragan/thesis

Barragán, A. J., Al-Hadithi, B. M., Jiménez, A., Andújar, J. M., 2013. A general methodology for online TS fuzzy modeling by the extended kalman filter. Applied Soft Computing, in–press. DOI: 10.1016/j.asoc.2013.09.005

Baumann, B., Washington, G., Glenn, B., Rizzoni, G., Mar. 2000. Mechatronic design and control of hybrid electric vehicles. IEEE/ASME Transactions on Mechatronics 5 (1), 58–72. DOI: 10.1109/3516.828590

Bellman, R. E., Zadeh, L. A., Dec. 1970. Decision–making in a fuzzy environment. Management Science 17 (4), B141–B164.

Berenji, H. R., Khedkar, P., Sep. 1992. Learning and tuning fuzzy logic controllers through reinforcements. IEEE Transactions on Neural Networks 3 (5), 724–740. DOI: 10.1109/72.159061

Bezdek, J. C., Dunn, J. C., Aug. 1975. Optimal fuzzy partitions: A heuristic for estimating the parameters in a mixture of normal distributions. IEEE Transactions on Computers C-24 (8), 835–838.

Bezdek, J. C., Ehrlich, R., Full, W. E., 1984. FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences 10 (2-3), 191–203. DOI: 10.1016/0098-3004(84)90020-7.

Bonissone, P. P., Chen, Y. H., Goebel, K. F., Khedkar, P. S., 1999. Hybrid soft computing systems: Industrial and commercial applications. Proceedings of the IEEE 87 (9), 1641–1667. DOI: 10.1109/5.784245

Bravo, J. M., Sánchez, O., Andújar, J. M., Fernández, E., 2002. Stability analysis and synthesis of fuzzy systems using interval arithmetic. En: 2002, E. S. L. (Ed.), 15th IFAC World Congress. No. 15. Barcelona, Spain, pp. 79– 79. DOI: 10.1016/j.fss.2004.01.008.

Bulteau, J., Vial, J., Feb. 1983. Curvilinear path and trust region in unconstrained optimization: a convergence analysis. Mathematical Programming Study 1, 82–101.

Cao, Y. Y., Frank, P. M., Apr. 2000. Analysis and synthesis of nonlinear timedelay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems 8 (2), 200–211. DOI: 10.1109/91.842153.

Chen, O. T., Lu, Y.-C., Chang, H.-T., 1995. Fuzzy reasoning processor for camera image autofocus. En: Wu, L. T. (Ed.), Visual Communications and Image Processing’95. Vol. 2501. SPIE, pp. 347–354. DOI: 10.1117/12.206740.

Cherry, A., Jones, R., Mar. 1995. Fuzzy logic control of an automotive suspension system. En: IEE Proceedings: Control Theory and Applications. IEE, Stevenage, United Kingdom, pp. 149–160. DOI: 10.1049/ip-cta:19951736

Chiu, S., 1994. Fuzzy model identification based on cluster estimation. En: Journal of Intelligent & Fuzzy Systems. Vol. 2. pp. 267–278.

Chua, L. O., Desoer, C. A., Kuh, E. S., 1987. Linear and nonlinear circuits. McGraw-Hill series in electrical and computer engineering: Circuits and systems. McGraw-Hill Book Company, New York.

Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L., Jan. 2004. Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Systems 141 (1), 5–31. DOI: 10.1016/S0165-0114(03)00111-8.

Cordón, O., Herrera, F., Lozano, M., 1995. A classified review on the combination fuzzy logic-genetic algorithms bibliography. Tech. Rep. DECSAI95129, Dept. of Computer Science and A.I., University of Granada.

Denaï, M. A., Palis, F., Zeghbib, A. H., Jun. 2007. Modeling and control of nonlinear systems using soft computing techniques. Applied Soft Computing 7 (3), 728–738. DOI: 10.1016/j.asoc.2005.12.005.

Dennis Jr., J., 1977. Nonlinear least-squares. State of the art in numerical analysis. Academic Press, pp. 269–312.

Dennis Jr., J., Schnabel, R. B., 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Vol. 16 of Classics in Applied Mathematics. Soc for Industrial & Applied Math.

Dorigo, M., Di Caro, G., Gambardella, L. M., 1999. Ant algorithms for discrete optimization. Artificial Life 5 (2), 137–172. DOI: 10.1162/106454699568728.

Dorigo, M., Maniezzo, V., Colorni, A., Feb. 1996. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 26 (1), 29–41. DOI: 10.1109/3477.484436.

Driankov, D., Hellendoorn, H., Reinfrank, M., 1993. An introduction to fuzzy control. Springer-Verlag, New York, USA.

Dunn, J. C., 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3, 32–57.

Feng, G., Cao, S. G., Rees, N. W., Oct. 2002. Stable adaptive control of fuzzy dynamic systems. Fuzzy Sets and Systems 131 (2), 217–224. DOI: 10.1016/S0165-0114(01)00236-6.

Ferrer, J., Rodrigo, M. A., Seco, A., Penya-roja, J. M., 1998. Energy saving in the aeration process by fuzzy logic control. Water Science and Technology 38 (3), 209–217. DOI: 10.1016/S0273-1223(98)00463-6.

Freeman, J. A., Skapura, D. M., 1991. Neural networks: algorithms, applications, and programming techniques. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

Gajate, A., 2010. Modelado y control neuroborroso de sistemas complejos. Aplicación a procesos de mecanizado de alto rendimiento. Ph.D. thesis, Dpto. de Informática Industrial, Centro de Automática y Robótica (CSICUPM).

Gajate, A., Haber, R. E., Jan. 2009. Networked neurofuzzy control. An application to a drilling process. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 6 (1), 31–38+127.

Goguen, J. A., Apr. 1969. The logic of inexact concepts. Synthese 19 (3-4), 325–373. DOI: 10.1007/BF00485654.

Grande, J. A., Andújar, J. M., Aroba, J., De La Torre, M. L., Beltrán, R., Apr. 2005. Precipitation, pH and metal load in AMD river basins: An application of fuzzy clustering algorithms to the process characterization. Journal of Environmental Monitoring 7 (4), 325–334. DOI: 10.1039/b410795k.

Grewal, M. S., Andrews, A. P., 2001. Kalman Filtering: Theory and Practice Using MATLAB, 2nd Edición. John Wiley & Sons, Inc., Hoboken, New Yersey.

Grippo, L., Lampariello, F., Lucidi, S., 1986. A nonmonotone line search technique for newton’s method. SIAM Journal on Numerical Analysis 23 (4), 707–716. DOI: 10.1137/0723046.

Grossberg, S., 1987. Competitive learning: from interactive activation to adaptive resonance. Cognitive Science 11 (1), 23–63. DOI: 10.1016/S0364-0213(87)80025-3.

Gupta, M., 2000. Soft Computing and Intelligent Systems. Theory and Applications. Academic Press, Hamilton, Ontario, Canada.

Han, Y. F., Shi, P., Jan. 2007. An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing 70 (4-6), 665–671. DOI: 10.1016/j.neucom.2006.10.022.

Haruki, T., Kikuchi, K., Aug. 1992. Video camera system using fuzzy logic. IEEE Transactions on Consumer Electronics 38 (3), 624–634. DOI: 10.1109/30.156746.

Hayashi, I., Takagi, H., May 1988. Formulation of fuzzy reasoning by neural network (in japanese). En: IFSA Japan. pp. 55–60.

Hofbauer, P., Arend, H. O., Pfannstiel, D., 1993. New heating systems controls based on the use of fuzzy logic. En: First European Congress on Fuzzy and Intelligent Technologies. Aachen, pp. 1036–1042.

Hopfield, J. J., Apr. 1982. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79 (8), 2554–2558.

Horikawa, S.-I., Furuhashi, T., Uchikawa, Y., Sep. 1992. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Transactions on Neural Networks 3 (5), 801–806. DOI: 10.1109/72.159069.

Jang, J.-S., 1992. Neuro-fuzzy modeling: architectures, analyses, and applications. Ph.D. thesis, University of California, Berkeley.

Jang, J.-S. R., 1991. Fuzzy modeling using generalized neural networks and kalman filter algorithm. AAAI’91, Proceedings of the ninth National conference on Artificial intelligence 91, 762–767.

Jang, J.-S. R., May 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3), 665–685. DOI: 10.1109/21.256541.

Jang, J.-S. R., Sun, C.-T., Mar. 1995. Neuro-fuzzy modeling and control. Proceedings of the IEEE 83 (3), 378–406. DOI: 10.1109/5.364486.

Jensen, R. P., Shen, Q., Jan. 2005. Fuzzy-rough data reduction with ant colony optimization. Fuzzy Sets and Systems 149 (1), 5–20. DOI: 10.1016/j.fss.2004.07.014.

Jiang, T., Li, Y. T., Aug. 1996. Generalized defuzzification strategies and their parameter learning procedures. IEEE Transactions on Fuzzy Systems 4 (1), 64–71. DOI: 10.1109/91.481845.

Jiménez, A., Aroba, J., de la Torre, M. L. d. l., Andújar, J. M., Grande, J. A., 2009. Model of behaviour of conductivity versus pH in acid mine drainage water, based on fuzzy logic and data mining techniques. Journal of Hydroinformatics 2 (11), 147–153. DOI: 10.2166/hydro.2009.015.

Juang, C. F., Lu, C. M., Lo, C., Wang, C. Y., Mar. 2008. Ant colony optimization algorithm for fuzzy controller design and its fpga implementation. IEEE Transactions on Industrial Electronics 55 (3), 1453–1462. DOI: 10.1109/TIE. 2007.909762.

Kalman, R. E., 1960. A new approach to linear filtering and prediction problems. Transactions on ASME-Journal of Basic Engineering 82 (series D), 35–45.

Karr, C. L., Jul. 1991. Design of an adaptive fuzzy logic controller using a genetic algorithm. En: 4th International Conference on Genetic Algorithms, ICGA’91. Morgan Kaufmann, San Diego, CA, USA, pp. 450–457.

Karr, C. L., Freeman, L. M., Meredith, D. L., Nov. 1989. Improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm. En: SPIE Conf. on Intelligent Control and Adaptive Systems. Vol. 1196. pp. 274–283. URL: http://dx.doi.org/10.1117/12.969926 DOI: 10.1117/12.969926.

Kim, H. M., Dickerson, J., Kosko, B., Dec. 1996. Fuzzy throttle and brake control for platoons of smart cars. Fuzzy Sets and Systems 84 (3), 209–234. DOI: 10.1016/0165-0114(95)00326-6.

Kohonen, T., 1988. Self Organization and Associative Memory. Springer Series in Information Sciences. Springer London, Limited.

Kosko, B., Nov. 1994. Fuzzy systems as universal approximators. IEEE Transactions on Computers 43 (11), 1329–1333. DOI: 10.1109/12.324566.

Lakoff, G., Oct. 1973. Hedges: A study in meaning criteria and the logic of fuzzy concepts. Journal of Philosophical Logic 2 (4), 458–508. DOI: 10.1007/BF00262952.

Layne, J. R., Passino, K. M., Yurkovich, S., Jun. 1993. Fuzzy learning control for antiskid braking systems. IEEE Transactions on Control Systems Technology 1 (2), 122–129. DOI: 10.1109/87.238405.

LeCun, Y., 1985. Une procedure d’apprentissage pour reseau a seuil symetrique (in french). Cognitiva. CESTA, Paris, France 85, 599–604.

Lee, H.-D., Sul, S.-K., Aug. 1998. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle. IEEE Transactions on Industrial Electronics 45 (4), 625–632. DOI: 10.1109/41.704891.

Lee, Y., Zak, S., Apr. 2002. Designing a genetic neural fuzzy antilock-brakesystem controller. IEEE Transactions on Evolutionary Computation 6 (2), 198–211. DOI: 10.1109/4235.996019.

Lennon, W. K., Passino, K. M., Mar. 1999. Intelligent control for brake systems. IEEE Transactions on Control Systems Technology 7 (2), 188–202. DOI: 10.1109/87.748145.

Li, Y., Yonezawa, Y., 1991. Stability analysis of fuzzy control systems by the hyperstability theorem. Japanese journal of fuzzy theory and systems 3 (2), 209–214.

Liang, W., John, Y., Feb. 1999. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Sets and Systems 101 (3), 353–362. DOI: 10.1016/S0165-0114(97)00098-5.

Lin, C.-F., Wang, S.-D., Mar. 2002. Fuzzy support vector machines. IEEE Transactions on Neural Networks 13 (2), 464–471. DOI: 10.1109/72.991432.

Lin, C.-T., Lee, C., Dec. 1991. Neural-network-based fuzzy logic control and decision system. IEEE Transactions on Computers 40 (12), 1320–1336. DOI: 10.1109/12.106218.

Lin, H.-R., Wang, W.-J., Nov. 1998. L2-stabilization design for fuzzy control systems. Fuzzy Sets and Systems 100 (1-3), 159–172. DOI: 10.1016/S0165-0114(97)00131-0.

López-Baldán, M. J., García-Cerezo, A., Cejudo, J. M., Romero, A., Apr. 2002. Fuzzy modeling of a thermal solar plant. International Journal of Intelligent Systems 17 (4), 369–379. DOI: 10.1002/int.10026.

Lughofer, E. D., Dec. 2008. FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems 16 (6), 1393–1410. DOI: 10.1109/TFUZZ. 2008.925908.

Maeda, M., Murakami, S., 1991. Stability analysis of fuzzy control systems using phase planes. En: Japanese journal of fuzzy theory and systems. Vol. 3. pp. 149–160.

Malki, H. A., Li, H., Chen, G., Nov. 1994. New design and stability analysis of fuzzy proportional-derivative control systems. IEEE Transactions on Fuzzy Systems 2 (4), 245–254. DOI: 10.1109/91.324804.

Mamdani, E. H., Dec. 1974. Application of fuzzy algorithms for control of a simple dynamic plant. Proceedings of the IEEE 121 (12), 1585–1588. DOI: 10.1049/piee.1974.0328.

Mamdani, E. H., Dec. 1977. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers C-26 (12), 1182–1191. DOI: 10.1109/TC. 1977.1674779.

Mamdani, E. H., Assilian, S., 1975. An experimental in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7 (1), 1–13.

Mauer, G. F., Nov. 1995. Fuzzy logic controller for an ABS braking system. IEEE Transactions on Fuzzy Systems 3 (4), 381–388. DOI: 10.1109/91.481947.

Maybeck, P. S., 1979. Stochastic models, estimation, and control. Vol. 141 of Mathematics in Science and Engineering. Academyc Press, 11 Fifth Avenue, New York.

McCulloch, W. S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5 (4), 115–133. DOI: 10.1007/BF02478259.

Meseguer, J., Sols, I., 1975. Automata in semimodule categories. En: Proceedings of the First International Symposium on Category Theory Applied to Computation and Control. Springer-Verlag, London, UK, pp. 193–198.

Moscinski, J., Ogonowski, Z., 1995. Advanced control with ´ MATLAB and SIMULINK. Ellis Horwood, Upper Saddle River, NJ, USA.

Mudi, R., Pal, N., Feb. 1999. A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems 7 (1), 2–16. DOI: 10.1109/91.746295.

Negoita, C. V., 1969. Information retrieval systems. Ph.D. thesis, Polytechnical Institute, Bucharest, Romania.

Negoita, C. V., 1974. Fuzzy systems and artificial intelligence. Cybernetes 3, 173–178.

Nguyen, H. T., Sugeno, M., Tong, R. M., Yager, R. R., 1995. Theoretical aspects of fuzzy control. John Wiley Sons, New York, NY, USA.

Nijmeijer, H., Schaft, A. v. d., 1990. Nonlinear dynamical control systems. Springer Verlag, Berlin.

Nomura, H., Hayashi, I., Wakami, N., 1993. A self–tuning method of fuzzy inference rules by descent method. En: Lowen, R., Roubens, M. (Eds.), Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, pp. 465–475.

Parker, D., 1985. Learning logic. Tech. Rep. TR-47, Center for Computational Res. Econ. Manage. Sci. Massachusetts Inst. Technol., Cambridge, MA.

Piegat, A., 1997. Hyperstability of fuzzy-control systems and degrees of freedom. En: 5th European Congress on Intelligent Techniques and Soft Computing, EUFIT’97. Vol. 2. pp. 1446–1450.

Piegat, A., 2001. Fuzzy modeling and control. Springer-Verlag Company, Heidelberg-New York.

Pok, Y.-M., Xu, J.-X., Jun. 1994. Why is fuzzy control robust? En: Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the Third IEEE Conference on. Vol. 2. Orlando, FL, pp. 1018–1022. DOI: 10.1109/FUZZY. 1994.343875.

Powell, M., Aug. 1984. On the global convergence of trust region algorithms for unconstrained minimization. Mathematical Programming 29 (3), 297– 303. DOI: 10.1007/BF02591998.

Ramaswamy, P., Riese, M., Edwards, R. M., Lee, K. Y., Dec. 1993. Two approaches for automating the tuning process of fuzzy logic controllers. En: 32nd IEEE Conference on Decision and Control. Part 2 (of 4). San Antonio, TX, USA. DOI: 10.1109/CDC. 1993.325490.

Rao, M.V.C. adn Prahlad, V., Jan. 1997. A tunable fuzzy logic controller for vehicle-active suspension systems. Fuzzy Sets and Systems 85 (1), 11–21. DOI: 10.1016/0165-0114(95)00369-X.

Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psycological Review 65 (6), 386–408.

Rosenblatt, F., 1962. Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Report (Cornell Aeronautical Laboratory). Spartan Books.

Sala, A., Ariño, C., Apr. 2009. Reduciendo distancias entre el control borroso y el control no lineal: luces y sombras. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 6 (2), 26–35.

Santos, M., Oct. 2011. Un enfoque aplicado del control inteligente. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 8 (4), 283–296. DOI: 10.1016/j.riai.2011.09.016.

Santos, M., Dormido, S., de la Cruz, J. M., 1996. Fuzzy-PID controllers vs. fuzzy-PI controllers. En: 5th IEEE International Conference on Fuzzy Systems FUZZ-IEEE’96. pp. 1598–1604. DOI: 10.1109/FUZZY. 1996.552571.

Schouten, N., Salman, M., Kheir, N., May 2002. Fuzzy logic control for parallel hybrid vehicles. IEEE Transactions on Control Systems Technology 10 (3), 460–468. DOI: 10.1109/87.998036.

Simon, D., 2002. Training fuzzy systems with the extended Kalman filter. Fuzzy Sets and Systems 132 (2), 189–199. DOI: 10.1016/S0165-0114(01)00241-X.

Slotine, J.-J. E., Li, W., 1991. Applied nonlinear control. Prentice-Hall, NJ.

Smith, R. E., 1970. Measure theory on fuzzy sets. Ph.D. thesis, Dept. of Mathematics, University of Saskatchewan, Saskatoon, Canada.

Sols, I., 1975. Aportaciones a la teoría de topos, al álgebra universal y a las matemáticas fuzzy. Ph.D. thesis, Universidad de Zaragoza, Zaragoza, España.

Steinmüller, H., Wick, O., 1993. Fuzzy and neurofuzzy applications in european washing machines. En: First European Congress on Fuzzy and Intelligent Technologies, EUFIT’93. Aachen, pp. 1031–1035.

Sugeno, M., 1974. Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology.

Sugeno, M., Yasukawa, T., Feb. 1993. Fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1 (1), 7–31. DOI: 10.1109/TFUZZ. 1993.390281.

Takagi, H., 1995. Industrial Applications of Fuzzy Control and Intelligent Systems. IEEE Press, Piscataway, NJ, USA.

Takagi, H., Apr. 1996. Industrial and commercial applications of nn/fs/ga/chaos in 1990s. En: International Workshop on Soft Computing in Industry (IWSCI’96). Muroran, Hokkaido, Japan, pp. 160–165.

Takagi, H., Hayashi, I., May 1991. NN-driven fuzzy reasoning. International Journal of Approximate Reasoning 5 (3), 191–212.

Tanaka, K., Ikeda, T., Wang, H. O., May 1998. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI–based designs. IEEE Transactions on Fuzzy Systems 6 (2), 250–265. DOI: 10.1109/91.669023.

Tanaka, K., Sugeno, M., Jan. 1992. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems 45 (2), 135–156. DOI: 10.1016/0165-0114(92)90113-I.

Tanaka, K., Wang, H. O., 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach. AWiley-Interscience publication. Wiley.

Tang, K., Man, K. F., Chen, G., Kwong, S., Aug. 2001. An optimal fuzzy PID controller. IEEE Transactions on Industrial Electronics 48 (4), 757–765. DOI: 10.1109/41.937407.

Vachtsevanos, G., Farinwata, S., Pirovolou, D., Jun. 1993. Fuzzy logic control of an automotive engine. IEEE Control Systems Magazine 13 (3), 62–68. DOI: 10.1109/37.214946.

Vélez, M. A., Sánchez, O., Romero, S., Manuel, A. J., Mar. 2010. A new methodology to improve interpretability in neuro-fuzzy TSK models. Applied Soft Computing 10 (2), 578–591. DOI: http://dx.doi.org/10.1016/j.asoc.2009.08.027.

Wang, H. O., Tanaka, K., Griffin, M. F., Feb. 1996. An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Transactions on Fuzzy Systems 4 (1), 14–23. DOI: 10.1109/91.481841.

Wang, L., Langari, R., 1994. Fuzzy controller design via hyperstability approach. En: IEEE International Conference on Fuzzy Systems. Vol. 1. pp. 178–182. DOI: 10.1109/FUZZY. 1994.343696.

Wang, L.-X., 1992. Fuzzy systems are universal approximators. En: IEEE International Conference on Fuzzy Systems. San Diego, CA, USA, pp. 1163– 1170. DOI: 10.1109/FUZZY. 1992.258721.

Wang, L. X., 1994. Adaptive fuzzy systems and control. Prentice Hall, New Jersey.

Wang, L.-X., 1997. A course in fuzzy systems and control. Prentice Hall, New Yersey, USA.

Wang, L.-X., Mendel, J. M., Mar. 1992. Back-propagation fuzzy system as nonlinear dynamic system identifiers. En: Fuzzy Systems, 1992, IEEE International Conference on. pp. 1409–1418. DOI: 10.1109/FUZZY. 1992.258711.

Werbos, P., 1974. Beyond regresion: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University, Cambridge, MA.

Widrow, B., 1959. Adaptative sampled-data systems, a statistical theory of adaptation. En: IRE WESCON Convention Record. Part 4. Institute of Radio Engineers, New York.

Widrow, B., Hoff, M. E., 1989. Adaptive switching circuits. En: Wescon Conference Record. pp. 709–717.

Won, J.-S., Langari, R., Feb. 2002. Fuzzy torque distribution control for a parallel hybrid vehicle. Expert Systems 19 (1), 4–10. DOI: 0.1111/1468-0394.00184.

Xie, X. L., Beni, G., Aug. 1991. A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (8), 841–847. DOI: 10.1109/34.85677.

Yen, J., Langari, R., 1999. Fuzzy Logic: Intelligence, control, and information. Prentice Hall.

Ying, H., Jul. 1998. Sufficient conditions on uniform approximation of multivariate functions by general Takagi–Sugeno fuzzy systems with linear rule consequent. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans 28 (4), 515–520. DOI: 10.1109/3468.686713.

Ying, H., Siler, W., Buckley, J. J., May 1990. Fuzzy control theory: A nonlinear case. Automatica 26 (3), 513–520. DOI: 10.1016/0005-1098(90)90022-A.

Yongman, L., Seong-Ik, J., Keewook, C., Dongyun, L., Wonchan, K., ChoongWoong, L., May 1994. Fuzzy-control processor for automatic focusing. IEEE Transactions on Consumer Electronics 40 (2), 138–144. DOI: 10.1109/30.286408.

Zadeh, L. A., May 1962. From circuit theory to system theory. En: Proceedings of th Institute of Radio Engineers. Vol. 50. pp. 856–865. DOI: 10.1109/JRPROC. 1962.288302.

Zadeh, L. A., 1965. Fuzzy sets. Information and Control 8 (3), 338–353.

Zadeh, L. A., Jan. 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics 3, 28–44. DOI: 10.1109/TSMC. 1973.5408575.

Zeng, K., Zhang, N.-Y., Xu, W.-L., Dec. 2000. A comparative study on suffi- cient conditions for Takagi–Sugeno fuzzy systems as universal approximators. IEEE Transactions on Fuzzy Systems 8 (6), 773–780. DOI: 10.1109/91.890337.

Zhao, Z.-Y., Tomizuka, M., Isaka, S., Sep. 1993. Fuzzy gain scheduling of PID controllers. IEEE Transactions on Systems, Man, and Cybernetics 23 (5), 1392–1398. DOI: 10.1109/21.260670.

Zimmermann, H. J., 1976. Description and optimization of fuzzy systems. International Journal of General Systems 2, 209–215.

Abstract Views

762
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Design of a Fuzzy Controller for a Hybrid Generation System
J. R. Nuñez, J. Mestre, J. J. Cabello, H. Dominguez, J. Fong, L. Peña, I. Benítez, D. De Oliveira
IOP Conference Series: Materials Science and Engineering  vol: 844  primera página: 012017  año: 2020  
doi: 10.1088/1757-899X/844/1/012017



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912