Una Técnica Bayesiana y de Varianza Mínima para Segmentación del Lumen Arterial en Imágenes de Ultrasonido

Autores/as

  • Sergio Rogelio Tinoco Martínez Universidad Michoacana de San Nicolás de Hidalgo
  • Félix Calderon Universidad Michoacana de San Nicolás de Hidalgo
  • Carlos Lara Álvarez Universidad Michoacana de San Nicolás de Hidalgo
  • Jaime Carranza Madrigal Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.1016/j.riai.2013.11.009

Palabras clave:

Detección automática, ultrasonografía, carótida, humeral, lumen, bayesiano, varianza, grafos, ajuste polinomial

Resumen

Las enfermedades cardiovasculares (ECVs) son la causa principal de decesos en el mundo entero. Basada en el ultrasonido, la valoración principal de las ECVs es la medición de la íntima-media carotídea y de la función endotelial humeral. En este trabajo se proponen mejoras a la metodología automática de detección del lumen arterial, fundamental en las pruebas referidas, presentada en (Calderon et al., 2013); basada en grafos y detección de bordes. Se propone un criterio bayesiano para segmentar el árbol de expansión mínima del grafo creado con los puntos intermedios entre los bordes. El lumen se localiza aplicando sobre las trayectorias segmentadas tres criterios: de longitud, de obscuridad y, el propuesto, de varianza mínima. En 294 sonografías el error promedio en la detección de la pared humeral cercana es 14.6 μm y desviación estándar 17.0 μm. En la pared lejana es 15.1 μm y desviación estándar 14.5 μm. Nuestra metodología mantiene el desempeño superior a los resultados en la literatura reciente que la metodología original presenta; superándola en exactitud general.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sergio Rogelio Tinoco Martínez, Universidad Michoacana de San Nicolás de Hidalgo

División de Estudios de Posgrado. Facultad de Ingeniería Eléctrica

Félix Calderon, Universidad Michoacana de San Nicolás de Hidalgo

División de Estudios de Posgrado. Facultad de Ingeniería Eléctrica

Carlos Lara Álvarez, Universidad Michoacana de San Nicolás de Hidalgo

División de Estudios de Posgrado. Facultad de Ingeniería Eléctrica

Jaime Carranza Madrigal, Universidad Michoacana de San Nicolás de Hidalgo

Escuela de Enfermería y Salud Pública

Citas

Amato, M., Montorsi, P., Ravani, A., Oldani, E., Galli, S., Ravagnani, P. M., Tremoli, E., Baldassarre, D., September 2007. Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: Correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. European Heart Journal 28 (17), 2094–2101.

Blake, A., Isard, M., 2000. Active contours. Springer-Verlag.

Calderón, F., Tinoco-Martínez, S. R., Carranza-Madrigal, J., October - December 2013. Un algoritmo basado en grafos para la detección automática de la luz arterial en imágenes ultrasonográficas. Revista Iberoamericana de Automática e Informática Industrial 10 (4), 423–433.

Canny, J., November 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8 (6), 679 –698.

Celermajer, D. S., Sorensen, K. E., Bull, C., Robinson, J., Deanfield, J. E., 1994. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. Journal of the American College of Cardiology 24 (6), 1468 – 1474.

Cheng, D. C., Schmidt-Trucksass, A., Cheng, K. S., Burkhardt, H., 2002. Using snakes to detect the intimal and adventitial layers of the common carotid artery wall in sonographic images. Computer Methods and Programs in Biomedicine 67 (1), 27–37.

Cohen, L. D., 1991. On active contour models and balloons. Computer Vision Graphics Image Processing Image Understanding 53 (2), 211–8.

Delsanto, S., Molinari, F., Giustetto, P., Liboni, W., Badalamenti, S., 2005. CULEX-Completely User-independent Layers EXtraction: ultrasonic carotid artery images segmentation. Proceedings of the 2005 IEEE Engineering in Medicine and Biology Society 27th Annual Conference 6, 6468–71.

Delsanto, S., Molinari, F., Giustetto, P., Liboni, W., Badalamenti, S., Suri, J. S., 2007. Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-D ultrasound images. IEEE Transactions on Instrumentation and Measurement 56 (4), 1265–74.

Delsanto, S., Molinari, F., Liboni, W., Giustetto, P., Badalamenti, S., Suri, J. S., 2006. User-independent plaque characterization and accurate IMT measurement of carotid artery wall using ultrasound. Proceedings of the 2006 IEEE Engineering in Medicine and Biology Society 28th Annual International Conference 1, 2404–7.

Destrempes, F., Meunier, J., Giroux, M. F., Soulez, G., Cloutier, G., 2009. Segmentation in ultrasonic B-mode images of healthy carotid arteries using mixtures of Nakagami distributions and stochastic optimization. IEEE Transactions on Medical Imaging 28 (2), 215–29.

Faita, F., Gemignani, V., Bianchini, E., Giannarelli, C., Ghiadoni, L., Demi, M., 2008. Real-time measurement system for evaluation of the carotid intimamedia thickness with a robust edge operator. Journal of Ultrasound in Medicine 27 (9), 1353–61.

Fischler, M. A., Bolles, R. C., June 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395.

Furberg, C. D., Byington, R. P., Craven, T. E., 1994. Lessons learned from clinical trials with ultrasound end-points. Journal of Internal Medicine 236 (5), 575–80.

Golemati, S., Stoitsis, J., Balkizas, T., Nikita, K., 2005. Comparison of B-mode, M-mode and Hough transform methods for measurement of arterial diastolic and systolic diameters. Proceedings of the 2005 IEEE Engineering in Medicine and Biology Society 27th Annual Conference 2 (1), 1758–61.

Golemati, S., Stoitsis, J., Sifakis, E. G., Balkizas, T., Nikita, K. S., 2007. Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound in Medicine and Biology 33 (12), 1918–32.

Golemati, S., Tegos, T. J., Sassano, A., Nikita, K. S., Nicolaides, A. N., 2004. Echogenicity of B-mode sonographic images of the carotid artery: work in progress. Journal of Ultrasound in Medicine 23 (5), 659–69.

Gutiérrez, M. A., Pilon, P. E., Lage, S. G., Kopel, L., Carvalho, R. T., Furuie, S. S., 2002. Automatic measurement of carotid diameter and wall thickness in ultrasound images. Computers in Cardiology 29, 359–62.

Hough, P. V. C., 1962. Method and means for recognizing complex patterns. U. S. Patent No. 3069654.

Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: Active contour models. Int. Journal of Computer Vision 1, 321–31.

Kruskal, J. B., 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. En: Proceedings of the American Mathematical Society. pp. 48–50.

Lai, K. F., Chin, R. T., 1995. Deformable contours-modeling and extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (11), 1084–90.

Liang, Q., Wendelhag, I., Wikstrand, J., Gustavsson, T., 2000. A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Transactions on Medical Imaging 19(2), 127–42.

Liguori, C., Paolillo, A., Pietrosanto, A., 2001. An automatic measurement system for the evaluation of carotid intima-media thickness. IEEE Transactions on Instumentation and Measurement 50 (6), 1684–91.

Lobregt, S., Viergever, M. A., 1995. A discrete dynamic contour model. IEEE Transactions on Medical Imaging 14 (1), 12–24.

Loizou, C. P., Pattichis, C. S., Pantziaris, M., Tyllis, T., Nicolaides, A., 2007. Snakes based segmentation of the common carotid artery intima media. Medical and Biological Engineering and Computing 45 (1), 35–49.

Molinari, F., Delsanto, S., Giustetto, P., Liboni, W., Badalamenti, S., Suri, J. S., 2008. Advances in diagnostic and therapeutic ultrasound imaging. Artech House, Norwood, MA, Ch. User-independent plaque segmentation and accurate intima-media thickness measurement of carotid artery wall using ultrasound, pp. 111–140.

Molinari, F., Liboni, W., Giustetto, P., Badalamenti, S., Suri, J. S., 2009. Automatic Computer-based Tracings (ACT) in longitudinal 2-D ultrasound images using different scanners. Journal of Mechanics in Medicine and Biology 9 (4), 481–505.

Molinari, F., Zeng, G., S., J., 2010a. An integrated approach to computer-based automated tracing and its validation for 200 common carotid arterial wall ultrasound images: a new technique. Journal of Ultrasound in Medicine 29 (3), 399–418.

Molinari, F., Zeng, G., Suri, J. S., 2010b. Atherosclerosis Disease Management. Springer, Ch. An Integrated Approach to Computer-Based Automated Tracing and IMT Measurement for Carotid Artery Longitudinal Ultrasound Images, pp. 221–251.

Molinari, F., Zeng, G., Suri, J. S., 2010c. Atherosclerosis Disease Management. Springer, Ch. Techniques and challenges in intima–media thickness measurement for carotid ultrasound images: a review, pp. 281–324.

Organizacion Mundial de la Salud, Enero 2011. Enfermedades cardiovasculares. http://www.who.int/mediacentre/factsheets/fs317/ es/index.html.

Pignoli, P., Longo, T., 1988. Evaluation of atherosclerosis with b-mode ultrasound imaging. The Journal of nuclear medicine and allied sciences 32 (3), 166–73.

Ronfard, R., 1994. Region based strategies for active contour models. International Journal of Computer Vision 13 (2), 229–51.

Schmidt, C., Wendelhag, I., 1999. How can the variability in ultrasound measurement of intima-media thickness be reduced? studies of interobserver variability in carotid and femoral arteries. Clinical Physiology 19 (1), 45–55.

Sedgewick, R., Wayne, K., 2011. Algorithms. Pearson Education, Inc.

Sivia, D. S., Skilling, J., 2006. Data Analysis: A Bayesian Tutorial. Oxford University Press, USA.

Stein, J. H., Korcarz, C. E., Mays, M. E., Douglas, P. S., Palta, M., Zhang, H., LeCaire, T., Paine, D., Gustafson, D., Fan, L., 2005. A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. Journal of the American Society of Echocardiography 18 (3), 244–51.

Stoitsis, J., Golemati, S., Kendros, S., Nikita, K. S., 2008. Automated detection of the carotid artery wall in B-mode ultrasound images using active contours initialized by the Hough transform. Proceedings of the 2008 IEEE Engineering in Medicine and Biology Society 30th Annual International Conference 2008, 3146–9.

Strang, G., 2006. Álgebra lineal y sus aplicaciones, 4th Edicion. Thomson.

Touboul, P. J., Prati, P., Yves Scarabin, P., Adrai, V., Thibout, E., Ducimetiere, P., 1992. Use of monitoring software to improve the measurement of carotid wall thickness by b-mode imaging. Journal of Hypertension 10 (Supplement 5), S37–42.

Wendelhag, I., Gustavsson, T., Suurkula, ¨ M., Berglund, G., Wikstrand, J., 1991. Ultrasound measurement of wall thickness in the carotid artery: fundamental principles and description of a computerized analysing system. Clinical Physiology 11 (6), 565–77.

Wendelhag, I., Liang, Q., Gustavsson, T., Wikstrand, J., 1997. A new automated computerized analyzing system simplifies readings and reduces the variability in ultrasound measurement of intima-media thickness. Stroke 28 (11), 2195–200.

Wendelhag, I., Wiklund, O., Wikstrand, J., 1992. Arterial wall thickness in familial hypercholesterolemia. ultrasound measurement of intima-media thickness in the common carotid artery. Arteriosclererosis, Thrombosis, and Vascular Biology 12 (1), 70–7.

Wendelhag, I., Wiklund, O., Wikstrand, J., 1996. On quantifying plaque size and intima-media thickness in carotid and femoral arteries. comments on results from a prospective ultrasound study in patients with familial hypercholesterolemia. Arteriosclererosis, Thrombosis, and Vascular Biology 16 (7), 843–50.

Williams, D. J., Shah, M., 1992. A fast algorithm for active contours and curvature estimation. Computer Vision Graphics and Image Processing: Image Understanding 55 (1), 14–26.

Xu, C., Prince, J. L., 1997. Gradient vector flow: A new external force for snakes. Proceedings of the 1997 IEEE Computer Vision and Pattern Recognition (CVPR’97) Computer Society Conference 1997, 66–71.

Xu, C., Prince, J. L., 1998. Snake, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7 (3), 359–69.

Xu, C., Yezzi, A., Prince, J. L., 2001. A summary of geometric level set analogues for a general class of parametric active contour and surface models. En: Proceedings of the 1st. IEEE Workshop on Variational and Level Set Methods in Computer Vision. pp. 104–11.

Descargas

Cómo citar

Tinoco Martínez, S. R., Calderon, F., Lara Álvarez, C. y Carranza Madrigal, J. (2014) «Una Técnica Bayesiana y de Varianza Mínima para Segmentación del Lumen Arterial en Imágenes de Ultrasonido», Revista Iberoamericana de Automática e Informática industrial, 11(3), pp. 337–347. doi: 10.1016/j.riai.2013.11.009.

Número

Sección

Artículos