Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de imágenes con precisión sub-píxel: un caso de estudio

Autores/as

  • C. Schurrer Universidad Tecnológica Nacional Regional Córdoba
  • A.G. Flesia Universidad Nacional de Córdoba
  • G. Bergues Universidad Tecnológica Nacional Regional Córdoba
  • G. Ames Universidad Tecnológica Nacional Regional Córdoba
  • L. Canali Universidad Tecnológica Nacional Regional Córdoba

DOI:

https://doi.org/10.1016/j.riai.2014.05.004

Palabras clave:

Autocolimador, sensor CMOS, Interfaz visual, precisión subpixel

Resumen

Este documento tiene el objetivo de describir el potencial de una interfaz visual básica en un Autocolimador del tipo Nikon 6B/6D, para reemplazar al operario en una medición de calidad metrológica. La interfaz visual implementada consta de una cámara con sensor CMOS adosada al ocular del autocolimador, partes posicionales, y un sistema de procesamiento digital de imágenes propio, escrito en lenguaje Matlab OR, que analiza la imagen de la ret́ıcula para detectar la escala y la cruz de medición a nivel sub-ṕıxel. Mediante un experimento controlado, realizado con un nivel electrónico trazable internacionalmente, se obtuvieron, con este sistema, ángulos de cabeceo (αy) con una resolución tres veces mejor que la del instrumento sin interfaz. Este ejemplo sugiere que el valor de 0.06 píxeles para la incertidumbre asociada con la posición sub-píxel de las diferentes líneas que conforman la retícula de medición es realista, y permite seguir trabajando en una interfaz robusta para todos los parámetros angulares posibles de ser medidos por el autocolimador.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

C. Schurrer, Universidad Tecnológica Nacional Regional Córdoba

CEMETRO

G. Bergues, Universidad Tecnológica Nacional Regional Córdoba

CIII

G. Ames, Universidad Tecnológica Nacional Regional Córdoba

CIII

L. Canali, Universidad Tecnológica Nacional Regional Córdoba

CIII

Citas

Aggarwal, N., Karl, W. C. 2006. Line detection in images through regularized Hough transform, IEEE Transactions on Image Processing, 15: 3, 582 – 591.

Alcock, S.G., Sawhney, K.J.S., Scott, S., Pedersen, U., Walton, R., Siewert, F., Zeschke, T., Noll, T. and Lammert, H. 2010. The Diamond-NOM: A noncontact profiler capable of characterizing optical figure error with subnm repeatability. Nuclear Instruments Methods A, 616, 224–228.

Goldsmith, N. T. (2011). Deep Focus; A digital image processing technigue to produce improve focal depth in light microscopy. Image Analysis and Stereology, [S.l.], v. 19, n. 3, p. 163-167, may. 2011

Born, M., Wolf, W. 1998. Principles of optics, 6th edition. Cambridge University Press. Chapter IV, Image forming instrument, 233–255.

Brucas, D. and Giniotis, V. 2009. Creation of a multi-reference-angle comparator, Optical Engineering 48:3, 0336020–0336024.

Canabal, H., Alonso, J., Bernabeu, E. 2001. Laser beam deflectometry based on a subpixel resolution algorithm. Optical Engineering, 40:11 2517–2523.

Fabijanska, A., Sankowski.D. 2009a. Computer vision system for high temperature measurements of surface properties. Machine Vision and Applications, 20:6, 411-421.

Fabijanska, A., Sankowski.D. 2009b. Improvement of the image quality of a high-temperature vision system. Measurement Science and Technology, 20:104018, 1–9.

Fernandes, L., Oliveira, M., Silva, R.,Crespo, G.J. 2006. A fast and accurate approach for computing the dimensions of boxes from single perspective images. Journal of the Brazilian Computer Society, 12:2, 19–30.

Hagara, M., Kulla, P. 2011. Edge detection with sub-pixel accuracy based on aproximation of with ERF function. Radioengeneering, 20:2, 516–524.

Hermosilla, T., Bermejo, E., Balaguer, A., Ruiz, L.A. 2008. Non-linear fourthorder image interpolation for subpixel edge detection and localization. Image and Vision Computing, 26:9, 1240–1248.

Hu, Z., Dang H., Li, X. A. 2008. Novel Fast Subpixel Edge Location Method Based on Sobel-OFMM. Proceedings of the IEEE International Conference on Automation and Logistics Qingdao, China.

Ma, L., Zhou, S., Ouyang, H., He, Z., Rong, W., Sun, L. 2012. Image Sub-pixel Recognition Method for Optical Precise Adjustment. Proceedings of 2012 IEEE International Conference on Mechatronics and Automation August 5 - 8, Chengdu, China, 1439–1444.

Maronna, R., Douglas Martin, R., Yohai, V.2006. Robust Statistics: Theory and Methods. Book Series: Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd.

Martinelli, P., Musazzi, S., Perin, U. 1994. An autocollimator based optical system for precise angular alignment control over large exploring areas. Review of Scientific Instruments 65:4,1012–1014.

Nguyen, N., Hoang, K., Jedrzejowicz, P. 2012. Detection of Tennis Court Lines for Sport Video Categorization. Computational Collective Intelligence. Technologies and Applications. Lecture Notes in Computer Science, 7654, 304–314.

Park, J.B., Lee, J.G., Lee, M.K., Lee, S. E. 2011. A glass thickness measuring system using the machine vision method. International Journal of Precision Engineering and Manufacturing, 12:5, 769–774.

Zhao, P., Zhao, W., Duan, Z., Zhao, W. 2012. Subpixel precise Edge Extraction Algorithm Based on Facet Model. Proceedings of the Fourth International Conference on Computational and Information Sciences (ICCIS), 86– 89.

Qu, Y., Cui, C., Chen, S., Li, J. 2005. A fast subpixel edge detection method using SobelZernike moments operator, Image and Vision Computing, 23, 11–17.

Reid, I., Zissermann, A. 1996. Goal-directed video metrology. Proceedings of European Conference on Computer Vision, 647–658.

Schafer, R. 2011. What Is a Savitzky-Golay Filter?. IEEE Signal Processing Magazine, 111–116, July 2011.

Siewert, F., Buchheim, J. , Hoft, T. , Fiedler, S. Bourenkov, G., Cianci, M. , Signorato, R. 2011. High resolution slope measuring deflectometry for the characterization of ultra-precise reflective X-ray optics. Proceedings of 56th International Scientific Colloquium, Ilmenau University of Technology, 12- 16 September 2011, 1–9.

Siewert, F., Noll, T., Schlegel, T., Zeschle, T. and Lammert, H. 2004. The Nanometer Optical Component Measuring Machine: a new Sub-nm Topography Measuring Device for X-Ray Optics at BESSY, AIP Conference Proceedings, 705, 847–850, Mellville, NY, 2004.

Soufli, R., Fernandez-Perea, M., Baker S. L., Robinson, J. C., Gullikson, E. M., Heimann, P., Yashchuk, V.V., McKinney, W.R., Schlotter, W.F., Rowen, M. 2012. Development and calibration of mirrors and gratings for the soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser. Applied Optics, 20:51(12), 2118–2128.

Sui, L., Sheng, W. 2009. Edge Detection Algorithm Based on Facet Model. Computer Engineering, 35, 187–189.

Tabatabai, A. J., Mitchel, O. R. 1989. Edge location to subpixel values in digital imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:12, 1293–1309.

Tan, J., Ao, L., Cui, J., Kang, W. 2007. Further improvement of edge location accuracy of charge-coupled-device laser autocollimators using orthogonal Fourier-Mellin moments. Optical Engineering, 46:5, May 2007.

Descargas

Cómo citar

Schurrer, C., Flesia, A., Bergues, G., Ames, G. y Canali, L. (2014) «Interfaz visual para un Autocolimador Nikon 6D mediante procesamiento de imágenes con precisión sub-píxel: un caso de estudio», Revista Iberoamericana de Automática e Informática industrial, 11(3), pp. 327–336. doi: 10.1016/j.riai.2014.05.004.

Número

Sección

Artículos