Modelado y Control de un Exoesqueleto para la Rehabilitación de Extremidad Inferior con dos grados de libertad
DOI:
https://doi.org/10.1016/j.riai.2014.02.008Palabras clave:
Exoesqueleto Mecánico, Rehabilitación, Control de Fuerza, Actuador SEAResumen
Los exoesqueletos mecánicos son robots acoplados a las extremidades del cuerpo humano enfocados en el incremento de su fuerza, velocidad y rendimiento principalmente. Las principales aplicaciones son en la milicia, en la industria y en la medicina. El exoesqueleto se puede utilizar para la rehabilitación de las extremidades cuando por causas de algún accidente o enfermedad se tiene una actividad muscular reducida o nula. En este artículo se presenta un exoesqueleto de dos grados de libertad para realizar ejercicios de rehabilitación para tobillo y rodilla. El diseño y fabricación del exoesqueleto está basado en la instrumentación de una ortesis del miembro inferior derecho. El Exoesqueleto utiliza sensores que estiman la fuerza producida por el humano y se encuentran incorporados en los actuadores de tipo SEA (Series Elastic Actuator) que se utilizan para amplificar la fuerza humana. Además mediante sensores se estima la posición y velocidad angular de las articulaciones, que se utilizan para controlar el movimiento de la pierna. En el artículo se presentan: un estudio del modelo dinámico del exoesqueleto y de los actuadores acoplados por medio del método de perturbaciones singulares, el diseño de un control basado en la suma de fuerzas generadas por el humano y el exoesqueleto, el diseño y fabricación del prototipo experimental y sus actuadores. Se realizaron simulaciones que muestran el buen desempeño del controlador propuesto. Los resultados experimentales muestran que existe una amplificación de la fuerza generada por el portador y amplificada por la mecánica del exoesqueleto, ofreciendo una disminución en el esfuerzo del usuario para mantenerse de pie y realizar ejercicios de flexión y extensión de las articulaciones. De manera que la amplificación de la fuerza puede aumentarse o disminuirse según se necesite, permitiendo al usuario una mejora evolutiva hasta llegar a la rehabilitación completa.Descargas
Citas
Bharadwaj, K., Sugar, T. G., 2006. Kinematics of a robotic gait trainer for stroke rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA ’06) pp. 3492-3497.
Bouri, M., Gall, B. L., Clavel, R., 2009. A new concept of parallel robot for rehabilitation and fitness: the lambda. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ’09) pp. 2503-2508.
Bouri, M., Stauffer, Y., Schmitt, C., 2006. The walktrainer: a robotic system for walking rehabilitation. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ’06) pp. 1616-1621.
Bullimore, S. R., Burn, J. F., J. T., 2007. Ability of the planar spring mass model to predict mechanical parameters in running humans.
Derrick, T. R., Caldewell, G. E., Hamill, J., 2000. Mass spring damper modeling of the human body to study running and hopping: an overview.
Ding, Y., Sivak, M., Weinberg, B., Mavroidis, C., Holden, M. K., 2010. Nuvabat: northeastern university virtual ankle and balance trainer. in Proceedings of the IEEE Haptics Symposium, (HAPTICS ’10) pp. 509-514.
Feldman, A. G., 1974. Change in the length of the muscle as a consequence of a shift in equilibrium in the muscle-load system. Biophys vol. 19, pp. 544-548.
Ferris, D. P., Sawicki, G. S., Domingo, A. R., 2005. Powered lower limb orthoses for gait rehabilitation. Topics in Spinal Cord Injury Rehabilitation vol. 11, no. 2, pp. 34-49.
Glynn, A., Fiddler, H., 2009. The physiotherapist’s pocket guide to exercise, assessment, prescription and training. ELSEVIER.
Goffer, A., 2006. Gait-locomotor apparatus US patent number 7 153 242.
Hogan, N., 1980. Mechanical impedance control in assistive devices and manipulators. Joint Automatic Control.
Hogan, N., 1984. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Automat. Contr. vol. 29, pp. 681-690.
Hogan, N., 1985. The mechanics of multi-joint posture and movement. Biological Cybern vol. 52, pp. 315-331.
Homma, K., Usuba, M., 2007. Development of ankle dorsiflexion/plantarflexion exercise device with passive mechanical joint. in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR ’07) pp. 292-297.
Hoppenfeld, S., Murthyr, V. L., 2001. Fracturas tratamiento y rehabilitacion. MARBAN First Edition.
Huston, R. L., 2012. Principles of biomechanics. University of Rhode Island CRC Press.
Hwang, S., Kim, J., Yi, J., Tae, K., Ryu, K., Kim, Y., 2006. Development of an active ankle foot orthosis for the prevention of foot drop and toe drag. in Proceedings of the International Conference on Biomedical and Pharmaceutical Engineering, (ICBPE ’06) pp. 418-423.
Kawamoto, H., Sankai, Y., 2002. Power assist system hal-3 for gait disorder person. in Proceedings of the 8th International Conference on Computers Helping People with Special Needs pp. 196-203.
Kawamoto, H., T.Hayashi, Sakurai, T., Eguchi, K., Sankai, Y., 2009. Development of single leg version of hal for hemiplegia. in Proceedings of the 31st Annual International Conference of the IEEE Engineering inMedicine and Biology Society, (EMBC ’09) pp. 5038-5043.
Kelso, J. A. S., Holt, K. G., 1980. Exploring a vibratory systems analysis of human movement production. Neurophys vol. 43, pp. 1183-1196.
Khalil, H. K., 2002. Nonlinear systems. Third Edition pp. 433.
Khanna, I., Roy, A., Rodgers, M. M., Krebs, H. I., MacKo, R. M., Forrester, L. W., 2010. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. Journal of NeuroEngineering and Rehabilitation vol. 7, no. 1, article 23.
Kikuchi, T., Oda, K., Furusho, J., 2010. Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch. Advanced Robotics vol. 24, no. 16, pp. 671-686.
Krebs, H. I., Dipietro, L., Levy-Tzedek, S., 2008. A paradigm shift for rehabilitation robotics. IEEE Engineering in Medicine and Biology Magazine vol. 27, no. 4, pp. 61-70.
Nichols, T. R., Houk, J. C., 1976. The improvement in linearity and the regulation of stiffness that results from the actions of the stretch reflex. Jornal of Neurophysiology vol. 39, pp. 119-142.
Nikitczuk, J., Weinberg, B., Canavan, P. K., Mavroidis, C., 2010. Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid. IEEE/ASME Transactions on Mechatronics vol. 15, no. 6, Article ID 5353649, pp. 952-960.
Nikooyan, A. A., Zadpoor, A. A., 2011. Modeling the stiffnes characteristics of the human body while running with various stride lengths.
Peshkin, M., Brown, D. A., Munne, J. J. S., 2005. Kineassist: a robotic overground gait and balance training device. in Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics pp. 241-246.
Pratt, G. A., Williamson, M. M., 1995. Series elastic actuator. IEEE.
Pratt, J., Krupp, B., Morse, C., 2002. Series elastic actuators for high fidelity force control. Industrial Robot: An International Journal 29 (3), 234–241.
Pratt, J. E., Krupp, B. T., Morse, C. J., Collins, S. H., 2004. The roboknee: an exoskeleton for enhancing strength and endurance during walking. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on. Vol. 3. IEEE, pp. 2430–2435.
Robinson, D. W., Pratt, J. E., Paluska, D. J., Pratt, G. A., 1999. Series elastic actuator development for a biomimetic walking robot. IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
Rocon, E., Ruíz, A., Belda-Lois, J., Moreno, J., Pons, J. L., Raya, R., Ceres, R., 2008. Diseño, desarrollo y validación de dispositivo robótico para la supresión del temblor patológico. Revista Iberoamericana de Automática e Informática Industrial vol. 5 (num. 2), pp. 79–92.
Roy, A., Krebs, H. I., Patterson, S. L., 2007. Measurement of human ankle stiffness using the anklebot. in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR ’07) pp. 356-363.
Satici, A. C., Erdogan, A., Patoglu, V., 2009. Design of a reconfigurable ankle rehabilitation robot and its use for the estimation of the ankle impedance. in Proceedings of the IEEE International Conference on Rehabilitation Robotics, (ICORR ’09) pp. 257-264.
Sawicki, G. S., Ferris, D. P., 2009. A pneumatically powered kneeankle-foot orthosis (kafo) with myoelectric activation and inhibition. Journal of NeuroEngineering and Rehabilitation vol. 6, p. 23.
Schmitt, C., Metrailler, P., Al-Khodairy, A., 2004. The motion maker: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation. in Proceedings of the 8th Vienna International Workshop on Functional Electrical Stimulation pp. 117-120.
Seo, K. H., Lee, J. J., 2009. The development of two mobile gait rehabilitation systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering vol. 17, no. 2, Article ID 4785182, pp. 156-166.
Spong, M., Vidyasagar, M., 1989. Robot dynamics and control John Wiley and Sons.
Sui, P., Yao, L., Lin, Z., Yan, H., Dai, J. S., 2009. Analysis and synthesis of ankle motion and rehabilitation robots. in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ’09) pp. 2533-2538.
Vidyasagar, M., 1993. Nonlinear systems analysis Prentice hall, New Jersey.
Wyeth, G., 2006. Information technology and electrical engineering. IEEE.
Yoon, J., Novandy, B., Yoon, C. H., Park, K. J., 2010. A 6- dof gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains. IEEE/ASME Transactions on Mechatronics vol. 15, no. 2, Article ID 5424007, pp. 201-215.
Descargas
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)