Control Robusto de Posición para un Sistema Mecánico Subactuado con Fricción y Holgura Elástica

Raúl Rascón, Joaquín Álvarez, Luis T. Aguilar

Resumen

Se presenta una estrategia de control que combina las técnicas de modos deslizantes y control H∞, para regular la posición de un sistema mecánico subactuado con fricción y con una holgura elástica. Se muestra que el sistema controlado tiene una región de puntos de equilibrio, donde las trayectorias del sistema en lazo cerrado convergen de manera asintótica con un error de posición acotado en estado estacionario, incluso ante la presencia de cierto tipo de perturbaciones. La amplitud de dicho error puede reducirse mediante una sintonización adecuada de los parámetros del controlador. Además, el controlador atenúa el efecto de perturbaciones externas e incertidumbres en el modelado sobre la salida de la planta. La metodoloǵıa es aplicada a una plataforma experimental, mostrándose el buen desempeño del controlador propuesto.

Palabras clave

sistemas mecánicos subactuados; control robusto; control por modos deslizantes; control H∞

Texto completo:

PDF

Referencias

Acho, L., Orlov, Y., Solis, V., 2001. Nonlinear measurement feedback H∞ control of time-periodic systems with application to tracking control of robot manipulators. International Journal of Control 74, 190–198.

Adetola, V., DeHaan, D., Guay, M., 2009. Adaptive model predictive control for constrained nonlinear systems. Systems & Control Letters 58 (5), 320–326.

Aguilar, L., Orlov, Y., Acho, L., 2003. Nonlinear H∞ control of nonsmooth time varying systems with application to friction mechanical manipulators. Automatica 39, 1531–1542.

Anderson, B., Vreugdenhil, R., 1973. Network analysis and synthesis. Englewood Cliffs, Prentice Hall, NJ.

Branicky, M., 1998. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control 43, 475–482.

Brogliato, B., 1999. Nonsmooth Mechanics. Springer, London.

Brogliato, B., Niculescu, S.-I., Orhant, P., 1997. On the control of finitedimensional mechanical systems with unilateral constraints. IEEE Transactions on Automatic Control 42 (2), 200–215.

Castaños, F., Fridman, L., 2006. Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Transactions on Automatic Control 51 (5), 853 – 858.

Castaños, F., Fridman, L., 2011. Dynamic switching surfaces for output sliding mode control: An approach. Automatica 47 (9), 1957 – 1961.

Chang, Y.-C., Lee, C.-H., 1999. Robust tracking control for constrained robots actuated by dc motors without velocity measurements. IEE Proc. Control Theory and Applications 146 (2), 147–156.

Chiu, C.-S., Lian, K.-Y., Wu, T.-C., 2004. Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators. Automatica 40 (12), 2111–2119.

Christophersen, F. J., 2007. Optimal control of constrained piecewise affine systems. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg.

Doyle, J., Glover, K., Khargonekar, P., Francis, B., 1989. State space solutions to standard H2 and H∞ control problems. IEEE Transactions on Automatic Control 34, 831–846.

Ghafari-Kashani, A., Faiz, J., Yazdanpanah, M., 2010. Integration of non-linear H∞ and sliding mode control techniques for motion control of a permanent magnet synchronous motor. IET Electric Power Applications 4 (4), 267– 280.

Isidori, A., 2000. A tool for semiglobal stabilization of uncertain non minimumphase nonlinear systems via output feedback. IEEE Transactions on Automatic Control 48 (10), 1817–1827.

Isidori, A., Astolfi, A., 1992. Disturbance attenuation and H∞-control via measurement feedback in nonlinear systems. IEEE Transactions on Automatic Control 37 (9), 1283–1293.

Kazerooni, H., 1990. Contact instability of the direct drive robot when constrained by a rigid environment. IEEE Transactions on Automatic Control 35, 710–714.

Khalil, H., 2002. Nonlinear Systems. Prentice Hall, Upper Saddle River.

Leine, R. I., Van de Wouw, N., 2010. Stability and convergence of mechanical systems with unilateral constraints. Springer, Berlin.

Lian, J., Zhao, J., 2010. Robust H-infinity integral sliding mode control for a class of uncertain switched nonlinear systems. Journal of Control Theory and Applications 8 (4), 521–526.

Lian, K.-Y., Lin, C.-R., 1998. Sliding-mode motion/force control of constrained robots. IEEE Transactions on Automatic Control 43 (8), 1101–1103.

Mansard, N., Khatib, O., 2008. Continuous control law from unilateral constraint. IEEE International Conference on Robotics and Automation. ICRA 2008, 3359–3364.

Menini, L., Tornambe, A., 2001. Dynamic position feedback stabilisation of multidegrees-of-freedom linear mechanical systems subject to nonsmooth impacts. IEE Proceedings - Control Theory and Applications 148 (6), 488– 496.

Merzouki, R., M’Sirdi, N., 2004. Compensation of friction and backlash effects in an electrical actuator. J. Systems and Control Engineering 218, 75–84.

Paden, B., Sastry, S., 1987. A calculus for computing Filippov’s differential lators. IEEE Transactions on Circuits and Systems 34, 73–81.

Pérez, M., Jiménez, E., Camacho, E., april 2010. Design of an explicit constrained predictive sliding mode controller. Control Theory & Applications, IET 4 (4), 552 –562.

Potini, A., Tornambe, A., Menini, L., Abdallah, C., Dorato, P., 2006. Finite-time control of linear mechanical systems subject to non-smooth impacts. In: 14th Mediterranean Conference on Control and Automation, 2006.MED’06. pp. 1–5.

Rascón, R., Álvarez, J., Aguilar, L., 2010. Feedback stabilization and force control using sliding modes in a mechanical system subject to unilateral constraints. In: 11th International Workshop on Variable Structure Systems (VSS). pp. 341–345.

Rascón, R., Álvarez, J., Aguilar, L., 2012a. Regulation and force control using sliding modes to reduce rebounds in a mechanical system subject to a unilateral constraint. Control Theory & Applications, IET 6 (18), 2785–2792.

Rascón, R., Álvarez, J., Aguilar, L., 2012b. Sliding mode control with H∞; attenuator for unmatched disturbances in a mechanical system with friction and a force constraint. In: 12th International Workshop on Variable Structure Systems (VSS). pp. 434–439.

Rosas, D., Álvarez, J., Fridman, L., 2007. Robust observation and identification of ndof lagrangian systems. International Journal of Robust and Nonlinear Control 17, 842–861.

Sabanovic, A., Elitas, M., Ohnishi, K., 2008. Sliding modes in constrained systems control. IEEE Transactions on Industrial Electronics 55, 3332–3339.

Shevitz, D., Paden, B., 1994. Lyapunov stability theory of nonsmooth systems. IEEE Transactions on Automatic Control 39 (9), 1910–1914.

Tseng, C.-S., 2005. Mixed H2/H∞ adaptive tracking control design for uncertain constrained robots. Asian Journal of Control 7 (3), 296–309.

Utkin, V., 1978. Sliding Modes and Their Applications. Mir, Moscow.

Utkin, V., 1992. Sliding modes in control optimization. Springer, Berl´ın.

Abstract Views

838
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912