Algoritmo para el cálculo de la velocidad media óptima en una ruta (ASGA)

Autores/as

  • V. Corcoba Magaña Universidad Carlos III de Madrid
  • M. Muñoz Organero Universidad Carlos III de Madrid

DOI:

https://doi.org/10.1016/j.riai.2014.08.004

Palabras clave:

Conducción eficiente, Sistemas de ayuda a la conducción, Algoritmos Genéticos, Android, Sistemas Inteligentes de Transporte

Resumen

En este trabajo se propone un algoritmo para obtener la velocidad media óptima para ahorrar combustible y mejorar la seguridad. El algoritmo propuesto se basa en los algoritmos genéticos. El algoritmo emplea información sobre el entorno, la carretera y el vehículo para obtener la velocidad media que minimice el consumo de combustible sin incrementar drásticamente la duración del trayecto. Además, el algoritmo propuesto mejora la seguridad ya que adecua la velocidad a las condiciones de la vía. La información sobre el entorno se obtiene de servicios web y la información sobre el vehículo se obtiene a través del puerto OBD2. El algoritmo es validado en situaciones reales con incidentes de tráfico y sin ellos. Por otra parte, se analiza el impacto de la velocidad media y los incidentes de tráfico en las aceleraciones y su influencia en el consumo de combustible.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

V. Corcoba Magaña, Universidad Carlos III de Madrid

Departamento de Ingeniería Telemática

M. Muñoz Organero, Universidad Carlos III de Madrid

Departamento de Ingeniería Telemática

Citas

af Wahlberg A., 2007. Long-term effects of training in economical driving: fuel consumption, accidents, driver acceleration behaviour and technical feedback. International Journal of Industrial Ergonomics 37. 333–343. DOI: 10.1016/j.ergon.2006.12.003

Baltusis P., 2004. On-board vehicle diagnostics. SAE 2004-21-0009.

Barbé J., Boy G., 2006. On-board system design to optimize energy management. Proceedings of the European Annual Conference on Human Decision-Making and Manual Control Control (EAM'06). France.

Barth M., Boriboonsomsin K., 2009. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part D: Transport and Environment 14. 400-410. DOI: 10.1016/j.trd.2009.01.004

Boriboonsomsin K., Vu A., Barth M., 2010. CoEco-Driving: Pilot Evaluation of Driving Behavior Changes among U.S. Drivers. University of California, Riverside.

Casavola A., Prodi G., Rocca G., 2010. Efficient gear shifting strategies for green driving policies. American Control Conference (ACC). 4331-4336.

Ericsson E. 2001. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research Part D: Transport and Environment 6. 325-345. DOI: 10.1016/S1361-9209(01)00003- 7

Johansson H., Gustafsson, P. Henke, M., Rosengren, 2003. Proceedings from the 12th Symposium, Transport and Air Pollution Conference, Avignon, 2003.

Haworth N., Symmons M., 2001. The relationship between fuel economy and safety outcomes. Victoria. Australia: Monash University. 1–57.

Hegerty, B., Hung, C. C., Kasprak, K., 2009. A Comparative Study on Differential Evolution and Genetic Algorithms for Some Combinatorial Problems.URL: http://www.micai.org/2009/proceedings/.../cd/ws.../paper88. micai09. pdf.

Higgins, P., Williams, G., 2012. Vehicle Fuel Consumption Calculator. U.S. Patent No. 8,340,925. Washington, DC: U.S. Patent and Trademark Office.

Koskinen O. H., 2008. Improving vehicle fuel economy and reducing emissions by driving technique. Proceedings of the15th ITS World Congress. New York.

Lindfeldt E. G., Saxe M., Magnusson M., Mohseni F., 2010. Strategies for a road transport system based on renewable resources – The case of an import-independent Sweden in 2025. Applied Energy 87. 1836–1845. DOI: 10.1016/j.apenergy.2010.02.011

Mukay Y., Kanoh H., 2008. Wide-area traffic signal control using predicted traffic based on real-time information. Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems. Beijing, China, October 12-15, 2008.

O'Connor J.J., Robertson F. E., "Student's t-test," MacTutor History of Mathematics archive, University of St Andrews, http://wwwhistory.mcs.st-andrews.ac.uk/Biographies/Gosset.html

Riener A., Ferscha, A., Frech P., Hackl M., Kaltenberger M., 2010. Subliminal vibro-tactile based notification of CO2 economy while driving. 2nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications AutomotiveUI 2010), November 11-12, 2010, Pittsburgh, Pennsylvania, USA, ACM, ISBN: 978-1-4503-0437-5, pp. 92-101.

Saboohi Y., Farzaneh H., 2010. Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption. Applied Energy 86. 1925–1932. DOI: 10.1016/j.apenergy.2008.12.017

Van Mierlo J., Maggetto G., Van de Burgwal E., Gense R., 2004. Driving style and traffic measures-influence on vehicle emissions and fuel consumption. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 1. 35-40. DOI: 10.1243/095440704322829155

Villeta M., Lahera T., Merino D., Zato J.G., Naranjo J. E., Jiménez F., 2012. Modelo para la Conducción Eficiente y Sostenible basado en Lógica Borrosa. Revista Iberoamericana de Automática e Informática industrial 9. 259–266. DOI: 10.1016/j.riai.2012.05.009

Descargas

Cómo citar

Corcoba Magaña, V. y Muñoz Organero, M. (2014) «Algoritmo para el cálculo de la velocidad media óptima en una ruta (ASGA)», Revista Iberoamericana de Automática e Informática industrial, 11(4), pp. 435–443. doi: 10.1016/j.riai.2014.08.004.

Número

Sección

Artículos