Modelo Biomecánico de una Prótesis de Pierna

Diego A. Bravo M., Carlos F. Rengifo R.

Resumen

En este trabajo se presenta el modelo biomecánico de una prótesis de pierna. Con el objetivo de estudiar el cambio de velocidad en la unión prótesis-muñón al momento del impacto del pie con el suelo, está se modeló como un sistema resorte-amortiguador, per- mitiendo evidenciar la necesidad de construir la unión muñón-prótesis con dispositivos de impedancia mecánica variable. Adema's se desarrolló un simulador con el objetivo de hacer representaciones virtuales de un paciente con prótesis. Para ello se modeló al paciente como un robot b́ıpedo planar, el simulador permite estudiar el efecto de las fuerzas de impacto con el suelo de la unión prótesis-muñón como una etapa anterior a la implementación real de la misma.

Palabras clave

Marcha humana; Modelo biomecánico; prótesis; simulación

Texto completo:

PDF

Referencias

Acary, V., Brogliato, B., 2008. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Vol. 35 of Lecture Notes in Applied and Computational Mechanics. Springer Verlag.

Anitescu, M., Potra, F., 1997. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problem. ASME Nonlinear Dynamics 14, 231 – 247.

Anitescu, M., Stewart, D., Potra, F. A., July 1999. Time-stepping for threedimensional rigid-body dynamics 177 (3 – 4), 183 – 197.

Chevallerau, C., Bessonnet, G., Abba, G., Aoustin, Y., 2009. Bipedal Robots. Modeling, design and building walking robots, 1st Edition. Wiley.

Cifuentes, C., Martínez, F., Romero, E., 2010. Analisis teórico y computacional de la marcha normal y patológica: Una revision. Revista Médica Colombiana 18, 183–196.

Colombo, G., Filippi, S., Rizzi, C., Rotini, F., 2010. A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Computers in Industry 61 (6), 513 – 523.

Cottle, R., Pang, J., Stone, R., 1992. The Linear Complementarity Problem. Academic Press, San Diego – California – USA.

Dellon, B., Matsuoka, Y., march 2007. Prosthetics, exoskeletons, and rehabilitation [grand challenges of robotics]. Robotics Automation Magazine, IEEE 14 (1), 30 –34.

Ferris, A. E., Aldridge, J. M., Rabago, C. A., Wilken, J. M., 2012. Evaluation of a powered ankle-foot prosthetic system during walking. Archives of physical medicine and rehabilitation 93, 1911–1918.

Hermini, H., Rosario, J., Cassemiro, E., 2001. Proposal of modeling, simulation and implementation of robotics leg prosthesis. In: Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. Vol. 2. pp. 1415 – 1418 vol.2.

Hobara, H., Baum, B. S., Kwon, H.-J., Miller, R. H., Ogata, T., Kim, Y. H., Shim, J. K., 2013. Amputee locomotion: Spring-like leg behavior and stiff- ness regulation using running-specific prostheses. Journal of Biomechanics 46 (14), 2483 – 2489.

Ivancevic, V., Ivancevic, T., 2008. Human-Like Biomechanics: A Unified Mathematical Approach to Human Biomechanics and Humanoid Robotics. Intelligent Systems, Control and Automation: Science and Engineering, v. 28. Springer.

Jiménez-Fabián, R., Verlinden, O., 2012. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics 34 (4), 397 – 408.

Jin, D. W., Wang, R. C., Bai, C. Q., Huang, C. H., Zhang., J. C., 1998. Swing phase control of intelligent lower limb prosthesis using electrorheological fluid. Journal of Tsinghua University (Science and Technology), 30, 40–43.

Karimi, G., Tahani, M., 2010. Sep controlling parameter in design of above knee prosthesis with moving ankle. In: 17th Iranian Conference of Biomedical Engineering (ICBME). pp. 1–4.

Kim, J. H., Oh, J.-H., 2001. Development of an above knee prosthesis using mr damper and leg simulator. In: ICRA. pp. 3686 – 3691.

Landau, L., Lifshitz, E., 1978. Mecanica. No. v. 1 in Curso de física teórica. Reverté.

Lee, J. H., Yi, B.-J., Lee, J. Y., 2012. Adjustable spring mechanisms inspired by human musculoskeletal structure. Mechanism and Machine Theory 54 (0), 76 – 98.

Martins, M. M., Santos, C. P., Frizera-Neto, A., Ceres, R., 2012. Assistive mobility devices focusing on smart walkers: Classification and review. Robotics and Autonomous Systems 60 (4), 548 – 562.

Moreau, J. J., 1988. Nonsmooth Mechanics and Applications. Vol. 302 of CISM International Centre for Mechanical Sciences. Springer Verlag, Ch. Unilateral contact and dry friction in finite freedom dynamics, pp. 1 – 82.

Nandi, G., Ijspeert, A., Chakraborty, P., Nandi, A., 2009. Development of adaptive modular active leg (amal) using bipedal robotics technology. Robotics and Autonomous Systems 57, 603 – 616.

Pang, J., Trinkle, J., 1996. Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction 73 (2), 199 – 226.

Pejhan, S., Farahmand, F., Parnianpour, M., 2008. Design optimization of an above-knee prosthesis based on the kinematics of gait. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. pp. 4274–4277.

Rengifo, C. F., 2011. Contributions à la commande d’un robot bipède 3D: modélisation, calcul des forces de réaction, commande et actionnement. Éditions Universitaires Européennes,, Saarbrücken, Germany.

Rovetta, A., Chettibi, T., 2003. Development of a simple and efficient above knee prosthesis. In: International Symposium on Advances in Robot Dynamics and Control.

Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Damme, M. V., Ham, R. V., Visser, L., Wolf, S., 2013. Variable impedance actuators: A review. Robotics and Autonomous Systems.

Vazquez, J., Velasco-Villa, M., 2013. Analisis del deslizamiento en el punto de ´ apoyo de un robot b´ıpedo de 5-gdl. Revista Iberoamericana de Automatica ´ e Informatica Industrial ´ {RIAI} 10 (2), 133 – 142.

Wentink, E., Koopman, H., Stramigioli, S., Rietman, J., Veltink, P., 2013. Variable stiffness actuated prosthetic knee to restore knee buckling during stance: A modeling study. Medical Engineering & Physics 35 (6), 838 – 845.

Whittlesey, S. N., van Emmerik, R. E., Hamill, J., 2000. The swing phase of human walking is not a passive movement. Motor Control 4, 273–292.

Xie, H., Liang, Z., Li, F., Guo, L., Agosto 2010. The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. International Journal of Automation and Computing, 277–282.

Abstract Views

3013
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Análisis de Desempeño de un Protocolo para Redes Inalámbricas de Sensores Basado en TDMA con Capacidades de Radio Cognoscitivo
Israel Leyva-Mayorga, Mario E. Rivero-Angeles, Chadwick Carreto-Arellano, Vicent Pla
Revista Iberoamericana de Automática e Informática Industrial RIAI  vol: 13  num.: 1  primera página: 92  año: 2016  
doi: 10.1016/j.riai.2015.11.003



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912