Robots Móviles con Orugas Historia, Modelado, Localización y Control

Ramón González, Francisco Rodríguez, José Luis Guzmán

Resumen

Uno de los campos de aplicación más significativos de la robótica móvil consiste en robots capaces de operar en condiciones exteriores sobre terrenos no preparados (robots planetarios, robots en agricultura, robot en operaciones de búsqueda y rescate, robots militares, etc.). Sin embargo, conseguir que los robots se muevan de forma eficiente y precisa en este tipo de entornos no es una tarea sencilla. Un primer aspecto crítico es el sistema de locomoción. En este caso, las orugas constituyen una alternativa sólida a otro tipo de sistemas y desde principios del siglo XX han demostrado sus bondades en vehículos tripulados. En este artículo se motiva y se demuestra mediante pruebas reales la idoneidad de este tipo de locomoción para robots móviles en terrenos no preparados. Es importante remarcar que este artículo pretende ser un resumen extendido del libro recientemente publicado por los autores “Autonomous Tracked Robots in Planar Off-Road Conditions” (González et al., 2014), y, por lo tanto, no pretende ser una contribución original. Inicialmente se presenta una perspectiva histórica de los vehículos y los robots con orugas. Posteriormente se discuten los aspectos de modelado con especial mención al fenomeno del deslizamiento. A continuación, se analizan varias estrategias de localización, en particular, la odometria visual. También se analiza el aspecto del control de navegación, para ello se analizan varias estrategias con compensación del deslizamiento. Finalmente se expresan las conclusiones del trabajo en base a la experiencia de los autores en este campo.

Palabras clave

Deslizamiento; Odometria Visual; Control Adaptativo; Control Predictivo

Texto completo:

PDF

Referencias

Angelova, A., Matthies, L., Helmick, D., Perona, P., 2007. Learning and Prediction of Slip from Visual Information. Journal of Field Robotics 24 (3), 205–231.

Aström, K., Murray, R., 2008. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, USA.

Bekker, M., 1956. Theory of Land Locomotion. The Mechanics of Vehicle Mobility, First Edition. Ann Arbor. The Univiersity of Michigan Press, USA.

Benoit, O., Gotteland, P., Quibel, A., 2003. Prediction of Trafficability for Tracked Vehicle on Broken Soil: Real Size Tests. Journal of Terramechanics 40 (2), 135–160.

Borenstein, J., May 1994. The CLAPPER: A Dual–drive Mobile Robot with Internal Correction of Dead–reckoning Errors. IEEE Conference on Robotics and Automation, IEEE, pp. 3085–3090, San Diego, USA.

Brunelli, R., 2009. Template Matching Techniques in Computer Vision: Theory and Practice. John Wiley & Sons, USA.

Camacho, E., Bordons, C., 2004. Model Predictive Control, Second Edition. Advanced Textbooks in Control and Signal Processing. Springer, Germany.

Canudas, C., Siciliano, B., Bastin, G., 1997. Theory of Robot Control, Second Edition. Communications and Control Engineering. Springer, Germany.

Cariou, C., Lenain, R., Thuilot, B., Berducat, M., 2009. Automatic Guidance of a Four-Wheel-Steering Mobile Robot for Accurate Field Operations. Journal of Field Robotics 26 (6–7), 504–518.

Crolla, D., Schwanghart, H., 1992. Vehicle Dynamics - Steering I. Journal of Terramechanics 29 (1), 7–17.

Endo, D., Okada, Y., Nagatani, K., Yoshida, K., October 2007. Path Following Control for Tracked Vehicles Based on Slip–Compensating Odometry. IEEE International Conference on Intelligent Robots and Systems, IEEE, pp. 2871–2876, san Diego, USA.

González, R., Fiacchini, M., Álamo, T., Guzmán, J. L., Rodríguez, F., 2010. Adaptive Control for a Mobile Robot under Slip Conditions using an LMI– based Approach. European Journal of Control 16 (2), 144–155.

González, R., Rodríguez, F., Guzmán, J. L., 2014. Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization and Motion Control. Series: Studies in Systems, Decision and Control. Springer, Germany.

González, R., Rodríguez, F., Guzmán, J. L., Pradalier, C., Siegwart, R., 2012. Combined Visual Odometry and Visual Compass for Off-Road Mobile Robots Localization. Robotica 30 (6), 865–878.

Gracia, L., Tornero, J., 2007. Kinematic Modeling of Wheeled Mobile Robots with Slip. Advanced Robotics 21 (11), 1253–1279.

Helmick, D., Angelova, A., Matthies, L., 2009. Terrain Adaptive Navigation for Planetary Rovers. Journal of Field Robotics 26 (4), 391 – 410.

Helmick, D., Roumeliotis, S., Cheng, Y., Clouse, D., Bajracharya, M., Matthies, L., 2006. Slip-compensated Path Following for Planetary Exploration Rovers. Advanced Robotics 20 (11), 1257–1280.

Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J., 2001. Global Positioning System: Theory and Practice, Fifth Edition. Springer, Germany.

Hohl, G. H., 2007. Military Terrain Vehicles. Journal of Terramechanics 44, 23–34.

Hornback, P., 1998. The Wheel versus Track Dilemma. Armor Magazine 107 (2), 33–34.

Iagnemma, K., Dubowsky, S., September 2000. Mobile Robot Rough–Terrain Control (RTC) for Planetary Exploration. ASME Biennial Mechanisms and Robotics Conference, ASME, pp. 10–13, Baltimore, USA.

Iagnemma, K., Dubowsky, S., 2004. Mobile Robots in Rough Terrain. Estimation, Motion Planning, and Control with Application to Planetary Rovers. Springer Tracts in Advanced Robotics. Springer, Germany.

Iagnemma, K., Kang, S., Shibly, H., Dubowsky, S., 2004. Online Terrain Parameter Estimation for Wheeled Mobile Robots with Application to Planetary Rovers. IEEE Transactions on Robotics 20 (5), 921–927.

Iagnemma, K., Ward, C. C., 2009. Classification–based Wheel Slip Detection and Detector Fusion for Mobile Robots on Outdoor Terrain. Autonomous Robots 26 (1), 33–46.

Ishigami, G., Nagatani, K., Yoshida, K., 2009. Slope Traversal Controls for Planetary Exploration Rover on Sandy Terrain. Journal of Field Robotics 26 (3), 264–286.

Johnson, A. E., Goldberg, S. B., Yang, C., Matthies, L. H., May 2008. Robust and Efficient Stereo Feature Tracking for Visual Odometry. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 39–46, Pasadena, USA.

Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., 1990. A Stable Tracking Control Method for an Autonomous Mobile Robots. IEEE International Conference on Robotics and Automation, IEEE, pp. 384–389, Cincinnati, USA.

Klancar, G., Skrjanc, I., 2007. Tracking–error Model–based Predictive Control for Mobile Robots in Real Time. Robotics and Autonomous Systems 55 (1), 460–469.

Korlath, G., 2007. Mobility Analysys of Off-Road Vehicles: Benefits for Development, Procurement and Operation. Journal of Terramechanics 44 (5), 383 – 393.

Krebs, A., Thueer, T., Carrasco, E., Siegwart, R., February 2008. Towards Torque Control of the CRAB Rover. International Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, USA.

Labrosse, F., 2006. The Visual Compass: Performance and Limitations of an Appearance–Based Method. Journal of Field Robotics 23 (10), 913–941.

Le, A., 1999. Modelling and Control of Tracked Vehicles. PhD Thesis, University of Sydney, Sydney, Australia.

Lenain, R., Thuilot, B., Cariou, C., Martinet, P., 2007. Adaptive and Predictive Path Tracking Control for Off–road Mobile Robots. European Journal of Control 13 (4), 419–439.

Leung, T., Malik, J., 2001. Representing and Recognizing the Visual Appearance of Materials using Three-Dimensional Textons. Int. Journal of Computer Vision 43 (1), 29 – 44.

Liu, Y., Liu, G., 2009. Mobile Manipulation using Tracks of a Tracked Mobile Robot. In: IEEE Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, pp. 948 – 953.

Low, C., Wang, D., 2008. GPS–based Path Following Control for a Car–like Wheeled Mobile Robot with Skidding and Slipping. IEEE Transactions on Control Systems Technology 16 (2), 340–347.

Martínez, J., Mandow, A., Morales, J., Pedraza, S., García-Cerezo, A., 2005. Approximating Kinematics for Tracked Mobile Robots. The International Journal of Robotics Research 24 (10), 867–878.

Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., Goldberg, S., Huertas, A., March 2007. Computer Vision on Mars. International Journal of Computer Vision 75 (1), 67–92.

Mayne, D., Rawlings, J., Rao, C., Scokaert, P., 2000. Constrained Model Predictive Control: Stability and Optimality. Automatica 36 (6), 789–814.

McNae, A., 2000. A History of Komatsu: Construction and Mining Equipment. Beenleigh, Qld.

Montiel, J., Davison, A., May 2006. A Visual Compass based on SLAM. IEEE International Conference on Robotics and Automation, IEEE, pp. 1917– 1922, Orlando, USA.

Morales, J., Martinez, J., Mandow, A., Garcia-Cerezo, A., Pedraza, S., 2009. Power Consumption Modeling of Skid–Steer Tracked Mobile Robots on Rigid Terrain. IEEE Transactions on Robotics 25 (5), 1098–1108.

Mourikis, A., Trawny, N., Roumeliotis, S., Helmick, D., Matthies, L., 2007. Autonomous Stair Climbing for Tracked Vehicles. International Journal of Robotics Research 26 (7), 737 – 758.

Nourani-Vatani, N., Roberts, J., Srinivasan, M., May 2009. Practical Visual Odometry for Car–like Vehicles. IEEE International Conference on Robotics and Automation, IEEE, pp. 3551–3557, Kobe, Japan.

Olson, C., Matthies, L., Schoppers, M., Maimone, M., 2003. Rover Navigation using Stereo Ego–motion. Robotics and Autonomous Systems 43 (4), 215– 229.

Oriolo, G., De Luca, A., Vendittelli, M., November 2002. WMR Control Via Dynamic Feedback Lineralization: Design, Implementation, and Experimental Validation. IEEE Transactions on Control Systems Technology 10 (6), 835–852.

Ray, L. E., 2009. Estimation of Terrain Forces and Parameters for RigidWheeled Vehicles. IEEE Transactions on Robotics 25 (3), 717 – 726.

Rubinstein, D., Coppock, J., 2007. A Detailed Single-link Track Model for Multi-Body Dynamic Simulation of Crawlers. Journal of Terramechanics 44 (5), 355 – 364.

Sánchez-Hermosilla, J., Rodríguez, F., González, R., Guzmán, J., Berenguel, M., 2010. A Mechatronic Description of an Autonomous Mobile Robot for Agricultural Tasks in Greenhouses. In: Barrera, A. (Ed.), Mobile Robots Navigation. InTech, pp. 583–608.

Shoval, S., 2004. Stability of a Multi Tracked Robot Traveling over Steep Slopes. In: IEEE Int. Conf. on Robotics and Automation (ICRA). Vol. 5. IEEE, pp. 4701–4706.

Siegwart, R., Nourbakhsh, I., 2004. Introduction to Autonomous Mobile Robots, First Edition. A Bradford book. The MIT Press, USA.

Wan, J., Vehi, J., Luo, N., 2009. A Numerical Approach to Design Control Invariant Sets for Constrained Nonlinear Discrete–time Systems with Guaranteed Optimality. Journal of Global Optimization 44 (3), 395–407.

Wang, D., Low, C., 2008. Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective. IEEE Transactions on Robotics 24 (3), 676–687.

Wong, J., 1984. An Introduction to Terramechanics. Journal of Terramechanics 21 (1), 5–17.

Wong, J., 2001. Theory of Ground Vehicles, Third Edition. John Wiley & Sons, Inc., USA.

Wong, J., Huang, W., 2006. Wheels vs. Tracks – A Fundamental Evaluation From the Traction Perspective. Journal of Terramechanics 43 (1), 27–42.

Yi, J., Song, D., Zhang, J., Goodwin, Z., April 2007. Adaptive Trajectory Tracking Control of Skid–Steered Mobile Robots. International Conference on Robotics and Automation, IEEE, pp. 2605–2610, Rome, Italy.

Yi, J., Wang, H., Zhang, J., Song, D., Jayasuriya, S., Liu, J., 2009. Kinematic Modeling and Analysis of Skid–Steered Mobile Robots With Applications to Low–Cost Inertial–Measurement–Unit Based Motion Estimation. IEEE Transactions on Robotics 25 (5), 1087–1097.

Zi-rong, L., Jian-zhong, S., Zhi-xiong, Z., 2013. A Reconfigurable Tracked Mobile Robot based on Four-linkage Mechanism. Journal of Central South University 20 (1), 62–70.

Abstract Views

2558
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912