Control Directo de Potencia Predictivo Robusto con Sincronismo Intrínseco
DOI:
https://doi.org/10.1016/j.riai.2015.02.004Palabras clave:
Control Directo de Potencia, Control de Corriente Predictivo Robusto, Inversor de Tensión Controlado en Corriente, Distorsión ArmónicaResumen
Este trabajo presenta un esquema de control directo de potencia instantánea para el inversor de tensión trifásico de tres hilos con frecuencia de conmutación fija y modulación por vectores espaciales con sincronismo intrínseco, por lo que no se requiere un PLL trifásico. El control se basa en un esquema de control predictivo dead-beat para lograr una rápida respuesta a la referencia de potencia. La propuesta consta además de un novedoso detector de secuencia positiva de red el cual asegura la eliminación de la distorsión en la corriente de salida debido a perturbaciones armónicas de la red. Se presentan resultados de simulación y resultados experimentales que verifican el desempeño del controlador propuesto obteniéndose una corriente de salida con bajo contenido armónico y donde los tiempos de respuesta hasta alcanzar la referencia de potencia es del orden de 200 μs.Descargas
Citas
Akagi, H., Watanabe, E., Aredes, M., 2007. Instantaneous power theory and applications to power conditioning. Vol. 31. Wiley-IEEE Press.
Andrade, W. L., Machado, P. D. L., Alves, E. L. G., Almeida, D. R., 2009. Test case generation of embedded real-time systems with interruptions for FreeRTOS. In: Oliveira, M. V. M., Woodcock, J. (Eds.), Formal Methods: Foundations and Applications. Vol. 5902 of Lecture Notes in Computer Science. Springer, pp. 54–69.
Bollen, M., Gu, I., 2006. Signal Processing of Power Quality Disturbances. Wiley-IEEE Press.
Bouafia, A., Gaubert, J.-P., Krim, F., jan. 2010. Predictive direct power control of three-phase pulsewidth modulation (pwm) rectifier using space-vector modulation (svm). IEEE Trans. Power Electron. 25 (1), 228 –236.
Bouneb, B., Grant, D. M., Cruden, A., McDonald, J. R., 2005. Grid connected inverter suitable for economic residential fuel cell operation. In: Proc. European Conference on Power Electronics and Applications. pp. 1–10.
Busada, C., Gomez Jorge, S., Leon, A., Solsona, J., Jul. 2012. Current controller based on reduced order generalized integrators for distributed generation systems. IEEE Trans. Ind. Electron. 59 (7), 2898 –2909.
Carugati, I., Donato, P., Maestri, S., Carrica, D., Benedetti, M., May 2012a. Frequency adaptive PLL for polluted single-phase grids. IEEE Trans. Power Electron. 27 (5), 2396–2404.
Carugati, I., Maestri, S., Donato, P., Carrica, D., Benedetti, M., Jan. 2012b. Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27 (1), 321–330.
Castelló, J., Espí, J., García-Gil, R., González, S. A., Jun. 2009. A robust predictive current control for three-phase grid-connected inverters. IEEE Trans. Ind. Electron. 56 (6), 1993–2004.
Channegowda, P. B., John, V., Dec. 2010. Filter optimization for grid interactive voltage source inverters. IEEE Trans. Ind. Electron. 57 (12), 4106–4114.
Chen, Y., Smedley, K., Brouwer, J., 8–12 Oct. 2006. A cost-effective threephase grid-connected inverter with maximum power point tracking. In: 41st IAS Annual Meeting Industry Applications Conference Conference Record of the 2006 IEEE. Vol. 2. pp. 995–1000.
Dai, M., Marwali, M. N., Jung, J.-W., Keyhani, A., Jan. 2008. Power flow control of a single distributed generation unit. IEEE Trans. Power Electron. 23 (1), 343–352.
Espi, J., Castello, J., Garcia-Gil, R., Garcera, G., Figueres, E., Aug. 2011. An adaptive robust predictive current control for three-phase grid-connected inverters. IEEE Trans. Ind. Electron. 58 (8), 3537 –3546.
Fischer, J. R., González, S. A., Herrán, M. A., Judewicz, M. G., Carrica, D. O., Feb. 2014. Calculation-delay tolerant predictive current controller for threephase inverters. IEEE Trans. Ind. Informat. 10 (1), 233–242.
Hayashi, K., Koizumi, H., Ohashi, Y., Kurokawa, K., 9–13 July 2006. A singlephase grid-connected inverter by utilizing ready-made PWM power IC. In: Proc. IEEE International Symposium on Industrial Electronics. Vol. 2. pp. 1138–1142.
Herrán, M. A., Fischer, J. R., González, S. A., Judewicz, M. G., Carrica, D. O., Jun. 2013. Adaptive dead-time compensation for grid-connected PWM inverters of single-stage PV systems. IEEE Trans. Power Electron. 28 (6), 2816 –2825.
Herrán, M. A., Fischer, J., González, S. A., Judewicz, M. G., Carrica, D., March 2014. Repetitive control with adaptive sampling frequency for wind power generation systems. Emerging and Selected Topics in Power Electronics, IEEE Journal of 2 (1), 58–69.
Hornik, T., Zhong, Q.-C., 2011. A current-control strategy for voltage-source inverters in microgrids based on H∞ and repetitive control. IEEE Trans. Power Electron. 26 (3), 943–952.
Hu, J., 2013. Improved dead-beat predictive DPC strategy of grid-connected DC-AC converters with switching loss minimization and delay compensations. IEEE Trans. Ind. Informat. 9 (2), 728–738.
Hu, J., Zhu, Z., Jan. 2013. Improved voltage-vector sequences on dead-beat predictive direct power control of reversible three-phase grid-connected voltage-source converters. IEEE Trans. Power Electron. 28 (1), 254 –267.
IEEE Standards Board, jun 2003. IEEE Std 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems. No. 1547. IEEE.
IEEE Standards Coordinating Committee 21, 12 2011. IEEE Std 1547-2011 Recommended Practice for Interconnecting Distributed Resources with Electric Power Systems Distribution Secondary Networks. IEEE.
Jiang, S., Cao, D., Li, Y., Liu, J., Peng, F. Z., Jun. 2012. Low-THD, FastTransient, and Cost-Effective Synchronous-Frame Repetitive Controller for Three-Phase UPS Inverters. IEEE Trans. Power Electron. 27 (6), 2994 – 3005.
Kazmierkowski, M., Jasinski, M., Wrona, G., 2011. Dsp-based control of gridconnected power converters operating under grid distortions. IEEE Trans. Ind. Informat. 7 (2), 204–211.
Peng, F. Z., Ott, G. W., Adams, D. J., Nov. 1998. Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems. IEEE Trans. Power Electron. 13 (6), 88– 92.
Qin, Z., Su, S., Lei, J., Dong, H., 2008. Study on intelligent control of three phase grid-connected inverter of wind power generation. In: Proc. International Conference on Intelligent Computation Technology and Automation (ICICTA). Vol. 1. pp. 1149–1152.
Rodriguez, J., Pontt, J., Silva, C. A., Correa, P., Lezana, P., Cortes, P., Ammann, U., Feb. 2007. Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 54 (1), 495 –503.
Rodriguez, P., Teodorescu, R., Candela, I., Timbus, A., Liserre, M., Blaabjerg, F., 2006. New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions. In: Power Electronics Specialists Conference, 2006. PESC ’06. 37th IEEE. pp. 1–7.
Time Engineers Ltd., Jan. 2014. The FreeRTOS.org project. http://www.freertos.org/.
Vilathgamuwa, D., Loh, P. C., Li, Y., Oct. 2006. Protection of microgrids during utility voltage sags. IEEE Trans. Ind. Electron. 53 (5), 1427 –1436.
Descargas
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)