Sintonización de controladores Pareto-óptimo robustos para sistemas multivariables. Aplicación en un helicóptero de 2 grados de libertad
DOI:
https://doi.org/10.1016/j.riai.2015.03.002Palabras clave:
Sistema no lineal, control robusto, control óptimo, índices de desempeño, tiempo realResumen
La sintonización de controladores Pareto-óptimo robustos ha sido empleada para mejorar el rendimiento de un helicóptero de dos grados de libertad con un algoritmo de control lineal. El procedimiento de sintonización del controlador está basado en la minimización simultánea de las integrales de la suma del cuadrado del error y de la acción de control. Como resultado de dicha minimización y dado que los objetivos entran en conflicto, se obtiene un conjunto de soluciones que describen un frente de Pareto. Posteriormente, un proceso de análisis en los mismos es llevado a cabo para seleccionar los controladores a implementar en el sistema físico. Los resultados experimentales con los controladores seleccionados muestran que el procedimiento de ajuste es eficaz y práctico.Descargas
Citas
Ahmad, S., Chipperfield, A., Tokhi, M., 2000a. Modelling and control of a twin rotor multi-input multi-output system. En: American Control Conference, 2000. Proceedings of the 2000. Vol. 3. pp. 1720 –1724 vol.3.
Ahmad, S., Chipperfield, A., Tokhi, O., 2000b. Dynamic modeling and optimal control of a twin rotor mimo system. En: National Aerospace and Electronics Conference, 2000. NAECON 2000. Proceedings of the IEEE 2000. pp. 391 –398.
Carrillo-Ahumada, J., Rodr´ıguez-Jimenes, G., Garc´ıa-Alvarado, M., 2011. Tuning optimal-robust linear mimo controllers of chemical reactors by using pareto optimality. Chemical Engineering Journal 174 (1), 357 – 367.
Coello Coello, C., 2006. Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine 1 (1), 28 – 36. DOI: 10.1109/MCI.2006.1597059
Corne, D. W., Knowles, J. D., 2007. Techniques for highly multiobjective optimisation: some nondominated points are better than others. En: Proceedings of the 9th annual conference on Genetic and evolutionary computation. GECCO ’07. ACM, New York, NY, USA, pp. 773 – 780.
CSS, 2012. Unmanned aerial vehicle. special issue. IEEE Control Systems magazine 32 (5).
Figueira, J., Greco, S., Ehrgott, M., 2005. Multiple criteria decision analysis: State of the art surveys. Springer international series.
Fregene, K., 2012. Unmanned aerial vehicles and control: Lockheed martin advanced technology laboratories. Control Systems, IEEE 32 (5), 32–34. DOI: 10.1109/MCS.2012.2205474
Gabriel, C., 2008. Modelling, simulation and control of a twin rotor mimosystem. Master thesis, Polytechnic University of Valencia, Spain.
García-Sanz, M., Elso, J., 2007a. Ampliacion del benchmark de diseño de controladores para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e Informática Industrial 4 (1), 107 – 110.
García-Sanz, M., Elso, J., 2007b. Resultados del benchmark de diseño de controladores para el cabeceo de un helicóptero. Revista Iberoamericana de Automática e Informática Industrial 4 (4), 117 – 120.
García-Sanz, M., Elso, J., Egana, I., 2006. Control del ángulo de cabeceo de un helicóptero como benchmark de diseño de controladores. Revista Iberoamericana de Automática e Informática Industrial 3 (2), 111 – 116.
García-Alvarado, M., Ruiz-Lopez, I., 2010. ´ A design method for robust and quadratic optimal mimo linear controllers. Chemical Engineering Science 65 (11), 3431 – 3438.
Hernández, L. H., Pestana, J., Palomeque, D. C., Campoy, P., Sánchez-Lopez, J. L., 2013. Identificación y control en cascada mediante inversión de no linealidades del cuatrirrotor para el concurso de ingeniería de control cea ifac 2012. Revista Iberoamericana de Automática e Informatica Industrial ´ RIAI 10 (3), 356–367.
Huba, M., 2013. Performance measures, performance limits and optimal PI control for the IPDT plant. Journal of Process Control 23 (4), 500 – 515. I
shibuchi, H., Tsukamoto, N., Nojima, Y., 2008. Evolutionary many-objective optimization: A short review. En: Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on.
Juang, J.-G., Huang, M.-T., Liu, W.-K., sept. 2008a. PID control using presearched genetic algorithms for a mimo system. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 38 (5), 716 –727.
Juang, J.-G., Lin, R.-W., Liu, W.-K., 2008b. Comparison of classical control and intelligent control for a mimo system. Appl. Math. Comput. 205, 778– 971.
Juang, J.-G., Liu, W.-K., Lin, R.-W., 2011. A hybrid intelligent controller for a twin rotor mimo system and its hardware implementation. ISA Transactions 50, 609–619.
Liu, C.-S., Chen, L.-R., Li, B.-Z., Chen, S.-K., Zeng, Z.-S., may 2006. Improvement of the twin rotor mimo system tracking and transient response using fuzzy control technology. En: Industrial Electronics and Applications, 2006 1ST IEEE Conference on. pp. 1 –6.
Lotov, A., Miettinen, K., 2008. Visualizing the Pareto frontier. En: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Multiobjective Optimization. Vol. 5252 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 213–243.
Marler, R., Arora, J., 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization (26), 369 – 395.
Miettinen, K. M., 1998. Nonlinear multiobjective optimization. Kluwer Academic Publishers.
Nejjari, F., Rotondo, D., Puig, V., Innocenti, M., june 2011. Lpv modelling and control of a twin rotor mimo system. En: Control Automation (MED), 2011 19th Mediterranean Conference on. pp. 1082 –1087.
Rahideh, A., Shaheed, M., april 2009. Robust model predictive control of a twin rotor mimo system. En: Mechatronics, 2009. ICM 2009. IEEE International Conference on. pp. 1 –6.
Rahideh, A., Shaheed, M., 2012. Constrained output feedback model predictive control for nonlinear systems. Control Engineering Practice 20 (4), 431–443.
Rahideh, A., Shaheed, M., Huijberts, H., june 2008. Stable adaptive model predictive control for nonlinear systems. En: American Control Conference, 2008. pp. 1673 –1678.
Reynoso-Meza, G., Garcia-Nieto, S., Sanchis, J., Blasco, F., 2013. Controller tuning by means of multi-objective optimization algorithms: A global tuning framework. Control Systems Technology, IEEE Transactions on 21 (2), 445–458.
Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J. M., August 2014a. A stabilizing PID controller sampling procedure for stochastic optimizers. En: Memories of the 19th World Congress IFAC 2014. pp. 8158–8163.
Reynoso-Meza, G., Sanchis, J., Blasco, X., Mart´ınez, M., 2014b. Controller tuning using evolutionary multi-objective optimisation: current trends and applications. Control Engineering Practice 28, 58–73.
Reynoso-Meza, G., Sánchez, H. S., Blasco, X., Vilanova, R., August 2014c. Reliability based multiobjective optimization design procedure for PI controller tuning. En: Memories of the 19th World Congress IFAC 2014. pp. 10263–10268.
Ruiz-López, I., Rodríguez-Jimenes, G., García-Alvarado, M., 2006. Robust MIMO PID controllers tuning based on complex/real ratio of the characteristic matrix eigenvalues. Chemical Engineering Science 61 (13), 4332 – 4340.
Skogestad, S., 2003. Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control 13 (4), 291 – 309.
Sánchez, H. S., Vilanova, R., 2013a. Multiobjective tuning of PI controller using the NNC method: Simplified problem definition and guidelines for decision making. En: Proceedings of the 18th. IEEE Conference on emerging technologies & factory automation (ETFA).
Sánchez, H. S., Vilanova, R., 2013b. Nash-based criteria for selection of pareto optimal controller. En: Proceedings of the 17th. International Conference on System Theory, Control anmd Computing.
Su, J.-P., Liang, C.-Y., Chen, H.-M., dec. 2002. Robust control of a class of nonlinear systems and its application to a twin rotor mimo system. En: Industrial Technology, 2002. IEEE ICIT ’02. 2002 IEEE International Conference on. Vol. 2. pp. 1272 – 1277.
Tao, C., Taur, J., Chen, Y., 2010a. Design of a parallel distributed fuzzy lqr controller for the twin rotor multi-input multi-output system. Fuzzy Set. Syst. 161, 2081–2103.
Tao, C.-W., Taur, J.-S., Chang, Y.-H., Chang, C.-W., 2010b. A novel fuzzysliding and fuzzy-integral-sliding controller for the twin-rotor multi-inputmulti-output system. Fuzzy Systems, IEEE Transactions on 18, 893–905.
Toha, S., Tokhi, M., nov. 2009. Dynamic nonlinear inverse-model based control of a twin rotor system using adaptive neuro-fuzzy inference system. En: Computer Modeling and Simulation, 2009. EMS ’09. Third UKSim European Symposium on. pp. 107 –111.
Vargas, F. J., Salgado, M. E., Silva, E. I., 2011. Optimal ripple-free deadbeat control using an integral of time squared error (ITSE) index. Automatica 47 (9), 2134 – 2137.
Velasco, J., García-Nieto, S., Reynoso-Meza, G., Sanchis, J., 2013. Implementación de un sistema hardware-in-the-loop para la simulación en tiempo real de pilotos automáticos para uavs. En: de Automática, C. E. (Ed.), Memorias de las XXXIV Jornadas de Automática.
Vilanova, R., Alfaro, V., Arrieta, O., 2012. Simple robust autotuning rules for 2-dof PI controllers. ISA Transactions 51 (1), 30 – 41.
Wen, P., Lu, T.-W., november 2008. Decoupling control of a twin rotor mimo system using robust deadbeat control technique. Control Theory Applications, IET 2 (11), 999 –1007.
Witczak, M., Puig, V., de Oca, S., oct. 2010. A fault-tolerant control scheme for non-linear discrete-time systems: Application to the twin-rotor system. En: Control and Fault-Tolerant Systems (SysTol), 2010 Conference on. pp. 861 –866.
Descargas
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)