Análisis de la Controlabilidad de Estado de Sistemas Irreversibles Mediante Teoría de Conjuntos

L.M. Gómez, H. Botero, H. Álvarez, Fernando di Sciascio

Resumen

Los sistemas irreversibles han sido poco estudiados en el marco de la teoría de control, a pesar de que una de las aplicaciones relevantes de los mismos es el control de los procesos por lotes, los cuales son irreversibles. Por lo tanto, en este artículo se propone un método para analizar la controlabilidad de estado de estos sistemas mediante la teoría de conjuntos, extensible también a los procesos por lotes. Para ello, se proponen las definiciones de Conjunto Reversible y Conjunto de Trayectorias Controlables, ambas para sistemas no lineales; este último conjunto permite el análisis de controlabilidad de estado de los sistemas irreversibles. Adicionalmente, se propone un algoritmo que permite calcular dichos conjuntos desde el conocimiento de la dinámica del sistema. La propuesta es aplicada a un problema de referencia de un proceso por lotes, con lo cual se obtienen resultados de simulación que evidencian las ventajas de la misma para analizar cuantitativamente la controlabilidad de estado de los sistemas irreversibles.

Palabras clave

Controlabilidad; Reversibilidad; Sistemas irreversibles; Procesos por lotes

Texto completo:

PDF

Referencias

Birkhoff, George D. Dynamical Systems, American Mathematical Society Providence, Colloquium Publications, 9, Rhode Island, 1991.

Blanchini, F. (1999). Set invariance in control. Automatica 35, 1747–1767

Blanchini, F., and Miani, S. Set Theoric Methods in Control. Series Editor Tamer Basar, University of Illinois at Urbana-Champaign, Birkhauser Boston. 2008

Bonvin, D. Optimal operation of batch reactors – A personal view”. Journal of Process Control, 8, Nos. 5-6. 335-368, 1998.

Blondel V., Tsitsiklis, J. A survey of computational complexity results in systems and control. Automatica, 36, 1249-1274. 2000

Bravo, J.M, D. Limon, T. Alamo, E.F. Camacho. On the computation of invariant sets for constrained nonlinear systems: An interval arithmetic approach. Automatica, 41, 1583-1589, 2005.

Bravo, J.M, Alamo, E.F. Camacho. Robust MPC of constrained discrete-time nonlinear systems based on approximated reachable sets. Automatica 42, 1745 – 1751, 2006.

Calafiore, G., Dabbene, F., and Tempo, R. (2000). Randomized Algorithms for Probabilistic Robustness with Real and Complex Structured Uncertainty. IEEE Transactions oAutomatic Control, 45 (12), 2218-2235

Calderon, C; Gómez, L; Alvarez H. Nonlinear Space State Controllability: Set Theory vs Differencial Geometry. XV Congreso Latinoamericano de Control Automático. Octubre, Lima Perú. 2012.

Camacho, J.; Picó, J. Minitorización de Procesos por Lotes Mediante PCA Multifase. Revista Iberoamericana de Automática e Informática Industrial. Vol 3. No. 3. p. 78 - 91. 2006.

Cueli y Bordons. Control Predictivo-iterativo basado en modelo y aplicado a procesos por lotes. Revista Iberoamericana de Automática e Informática Industrial. Vol 3. No. 1. p. 63-74. 2006.

Ferramosca, A, J.K. Gruber, D. Limon, E.F. Camacho. Control predictivo para seguimiento de sistemas no lineales. Aplicación a una planta piloto. Vol 10. No. 1. p. 18-29. 2013

Flores-Cerrillo, J., Macgregor, J. F. Latent variable MPC for trajectory tracking in batch processes. Journal of Process Control, 15, 651–663, 2005

Gómez, C., Gómez, L., Álvarez, H. An approach to stability and controllability analysis in batch processes using set theory methods. IEEE ANDESCON, September, Bogota, Colombia. 2010.

Gómez, L., Álvarez, H. (2011). La irreversibilidad: una mirada desde la teoría de los sistemas de control. Revistas Avances en Sistemas e Informática. 8, No2. 31-40. 2011.

Gomez, L.M. Alvarez; H. Castro, H. Limitaciones de la Controlabilidad de Estados en Procesos por Lotes. Información Tecnológica, 23 fasc.5 p.97 - 108, 2012

Gutierrez, L.p., Rincon, M, Alvarez, H. Control difficulties in bioprocesses inherited from their batch condition. XI RPIC, septiembre, Rio Cuarto, 2005.

Haddad, W., Chellaboina, V., Nersesov, S. Time-Reserval Symmetry, Poincaré Recurrence, Irreversibility, and the Entropic Arrow of Time: From Mechanics to System Thermodynamics”. Proc. 44th IEEE CDCECC, España, 5995-6002, 2005

Hangos, K.M., J. Bokor and G. Szederkényi. Analisis and Control of Nonlinear Process System. Springer, London, 2005.

Hermann, R., Krener, A.J. Nonlinear Controllability and Observability. IEEE Trans. Aut. Contr, 5, 728-740, 1977.

Isidori, A. Nonlinear Control Systems, Third edition, Springer, London, 1995.

Kalman, R.E. On the General Theory of Control System. Proc. First IFAC Congress, 1, 481-492. Moscow, 1960.

Kerrigan, E. and Maciejowski, J. Invariant Sets for Constrained Nonlinear Discrete-time Systems withApplication to Feasibility in Model Predictive Control. Proceedings of the 39 IEEE Conference on Decision and Control Sydney, Australia December. 2000

Kerrigan, E. C. Robust Constraint Satisfaction: Invariant Sets and Predictive Control, PhD thesis, Department of Engineering, University of Cambridge, UK, 2000.

Lee, K. and Lee, J. Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables. Journal of Process Control, 13, 607-621, 2003.

Limon D., Alamo, T. & Camacho, E. F. Enlarging the domain of attraction of MPC controller. Automatica, 41, 629-635, 2005.

Prigogine, Illia. The end of certany. Time, chaos and laws of nature. The Free Press, 1996.

Russell, S.A., D. G. Robertson, J. H. Lee and B. A. Ogunnaike. Model-based quality monitoring of batch and semi-batch processes. Journal of Process Control, 10, 317-332, 2000.

Sontag, E. Matthematical Control Theory. Second Edition, Springer, New York, 1998.

Sontag, E. (1988) Controllability is harder to decide than accessibility. SIAM J. Control and Opt., 26, 1106-1118

Srinivasan, B., and Bonvin, D. Controllability and stability of repetitive batch processes. Journal of Process Control, 17; 285-295, 2007.

Srinivasan, B., Palanki, S. and Bonvin, D. Dynamic optimization of batch processes II. Role of measurements in handling uncertain. Computers and Chemical Engineering, 27; 27-44, 2002.

Srinivasan, B., Palanki, S. and Bonvin, D. (2003). Dynamic optimization of batch processes I. Characterization of the nominal solution. Computers and Chemical Engineering. 27; 1-26

Uffink, J. Bluff your way in the second law of thermodynamics. J. Stud. Hist. Phil. Mod. Phys., 32, 305-394, 2001.

Vidyasagar, M. Nonlinear System Analysis, 1993.

Vidyasagar, M. Statistical Learning Theory and Randomized Algorithms for Control. IEEE Control Systems. 1998.

Abstract Views

646
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Reference Trajectory Design Using State Controllability for Batch Processes
C. A. Gómez-Pérez, L. M. Gómez, Hernan Alvarez
Industrial & Engineering Chemistry Research  vol: 54  num.: 15  primera página: 3893  año: 2015  
doi: 10.1021/ie504809x



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912