Control Libre de Modelo basado en Modos Deslizantes Integrales para Robots Submarinos Subactuados

R. Raygosa Barahona, E. Olguín Díaz, V. Parra Vega, L.A. Muñoz Ubando

Resumen

Se propone la combinación de una ley de control libre de modelo dinámico, en conjunto con una ley de guiado cinemático, para el seguimiento de trayectorias actuadas de un vehículo robo‘tico submarino subactuado. El sistema en lazo cerrado da lugar a modos deslizantes integrales, libres de castañeo, que garantizan la estabilidad exponencial local del seguimiento de las coordenadas actuadas con dinámica interna estable, bajo condiciones fáciles de encontrar en la práctica. La metodología del diseño se basa en una manipulación cuidadosa del modelo cuasilagrangiano de vehículos submarinos y de una ley de control que es independiente del modelo y sus parámetros, asumiendo acceso total del estado. Simulaciones comparativas considerando el PID convencional ilustran la factibilidad del control en las condiciones establecidas ante incertidumbres paramétricas y del modelo.

Palabras clave

Control Libre de Modelo; Modos Deslizantes Integrales; Sistemas Subactuados; Vehículo Submarino

Texto completo:

PDF

Referencias

Antoneilli, G., 2006. Underwater Robots. Springer.

Blanke, M., Lindegaard, K. P., Fossen, T. I., 2000. Dynamic model for thrust generation of marine propellers. presented at the Proc. IFAC Conf. Manoeuvreing of Marine Craft. Aalborg Denamark, Aug. 2000, pp. 23-25.

Breivik, M., Fossen, T., 2009. Guidance laws for autonomous underwater vehicles. In: In Intelligent Underwater Vehicles. I-Tech Education and Publishing (A. V. Inzartsev, Ed.), Vienna.

Brogliato, B., Lozano, R., Maschke, B., Egeland, O., 2007. Dissipative systems analysis and control: theory and applications, 2nd Edition.

Byrnes, C., Isidori, A., October 1991. Asymptotic stabilization of minimum phase nonlinear systems. IEEE Tansactions on Automatic Control 36 (10).

Chin, C., Lau, M., Low, E., Set, G., 2006. Software for modelling and simulation of a remotely-operated vehicle. Int. J. Simul. Model 5 (3), 114–125.

Chun Nan, Tong Ge, 2012. Model-free high order sliding controller for underwater vehicle with transient process. Advanced Materials Research 591-593.

Fossen, T., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley and Sons LTD, Institut for teknisk kybernetikk NTNU.

Healey, A., Leanard, D., July 1993. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, Vol. 18, No. 3, July 18 (3).

Krstic, M., Kanellakopoulos, I., Kokotovich, P., 1995. Nonlinear and Adaptive Control Design. John Wiley and Sons.

Leonard, N., 1997. Stability of a bottom-heavy underwater vehicle. Automatica 33 (3), 331–346.

Meirovich, L., 2003. Methods of Analytical Dynamics. Dover Publications, New York.

Olfati-Saber, R., February 2000. Nonlinear control of underactuated mechanical systems with applications to robotics and aerospace vehicles. Ph.D. thesis, M.I.T., Massachusetts.

Olguín-Díaz, E., Arechavaleta, G., Jarquin, G., Parra-Vega, V., December 2013. A passivity-based model-free force–motion control of underwater vehiclemanipulator systems. IEEE Transactions on Robotics 29 (6), 1469–1484.

Olguín-Díaz, E., Parra-Vega, V., 2007. On the force/posture control of a constrained submarine robot. In: 4th International Conference on Informatics in Control, Robotics and Automation, Conference Prodeedings.

Parra-Vega, V., Arimoto, S., Li, Y.-H., Hirzinger, G., Akella, P., December 2003. Dynamic sliding pid control for tracking of robot manipulators. IEEE Transactions on Robotic and Automation 19 (6), 967–976.

Perrier, M., Canudas de Wit, C., 1996. Experimental comparison of pid vs. pid plus nonlinear controller for subsea robots. In: Autonomous Robots. pp. 195–212.

Raygosa-Barahona, R., Parra-Vega, V., Olgu´ın-D´ıaz, E., Munoz-Ubando, A., October 2011. A model-free backstepping with integral sliding mode control for underactuated rovs. In: Electrical Engineering Computing Science and Automatic Control (CCE), 8th International Conference on. pp. 1–7.

Sagatun, S., Fossen, T., 1991. Lagrangian formulation of underwater vehicles dynamics. In: Proceedings on International Conference on Systems, Man, and Cybernetics, IEEE. Noruega.

Smallwood, D. A., Whitcomb, L. L., 2001. Preliminary experiments in the adaptive identification of dynamically positioned underwater robotic vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1803–1810.

Smallwood, D. A., Whitcomb, L. L., 2004. Model-based dynamic positioning of underwater robotic vehicles: Theory and experiment. IEEE Journal of Oceanic Engineering 29, 1.

Spong, M., 1994. Partial feedback linearization of underactuated mechanical systems. In: Intelligent Robots and Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS ’94. Vol. 1. pp. 314–321 vol.1.

Tedrake, R., March 2010. Underactuated Robotics. MIT Press.

García-Valdovinos, L.G., Salgado, T., Torres, H., 2009. Model-free high order sliding mode control for rov: Station-keeping approach. In: Proceedings of the MTS/IEEE Oceans, pp. 1–7.

Whitcomb, L., Stephen, M., 2013. Preliminary experiments in fully actuated model based control with six degree-of-freedom coupled dynamic plant models for underwater vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation.

Yoerger, D., Slotine, J., 1991. Adaptive sliding control of an experimental underwater vehicle. In: Proceedings of the IEEE International Conference on Robotics and Automation.

Abstract Views

994
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912