Modelado Basado en Agentes: un Enfoque desde la Ingeniería de Sistemas

María Pereda, Jesús M. Zamarreño

Resumen

El modelado basado en agentes (ABM, Agent Based Modeling) es una técnica de modelado que está siendo explotada con gran éxito en áreas como la ecología, ciencias sociales, economía, etc. Sin embargo, su uso como técnica de modelado en el campo de la Automática es más bien testimonial. En este artículo mostramos cómo se puede abordar el modelado basado en agentes desde el punto de vista de la Ingeniería de Sistemas y Automática y las particularidades que tiene como herramienta de modelado. Asimismo, proponemos una descripción matemática de los modelos basados en agentes que ilustramos con un par de ejemplos.

Palabras clave

Agentes; Modelado dinámico; Ingeniería de sistemas; Espacio de estados; Representaciones conceptuales

Texto completo:

PDF

Referencias

Borshchev, A., Filippov, A., July 2004. From system dynamics and discrete event to practical agent based modeling: Reasons, techniques, tools. In: Proceedings of the 22nd International Conference of the System Dynamics Society. Oxford, England.

Collier, N., 2003. RePast: An Extensible Framework for Agent Simulation. http://repast.sourceforge.net/ (last visited August 2013).

Dong, J., xin Yin, Y., xiang Peng, K., 2008. Industrial process coordinated and controlled based on multi-agent technology. Systems Engineering - Theory & Practice 28 (10), 119 – 124. DOI: http://dx.doi.org/10.1016/S1874-8651(10)60004-X

Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., del Olmo, R., López-Paredes, A., Edmonds, B., 2009. Errors and artefacts in agent-based modelling. Journal of Artificial Societies and Social Simulation 12 (1), 1. URL: http://jasss.soc.surrey.ac.uk/12/1/1.html

Gilbert, G. N., 2008. Agent-based models. Quantitative applications in the social sciences. Sage.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., GossCustard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jorgensen, C., Mooij, W. M., Muller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Ruger, N., Strand, E., Souissi, S., Stillman, R. A., Vabo, R., Visser, U., Deangelis, D. L., 2006. A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198, 115–126.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., Railsback, S. F., Nov. 2010. The ODD protocol: A review and first update. Ecological Modelling 221 (23), 2760–2768. DOI: http://dx.doi.org/10.1016/j.ecolmodel.2010.08.019

Hinkelmann, F., Murrugarra, D., Jarrah, A. S., Laubenbacher, R. C., 2010. A mathematical framework for agent based models of complex biological networks. Computing Research repository abs/1006.0408. URL: http://dblp.uni-trier.de/db/journals/corr/corr1006. html#abs-1006-0408

Hu, H.-X., Liu, A., Xuan, Q., Yu, L., Xie, G., 2013. Second-order consensus of multi-agent systems in the cooperation-competition network with switching topologies: A time-delayed impulsive control approach. Systems & Control Letters 62 (12), 1125 – 1135. DOI: http://dx.doi.org/10.1016/j.sysconle.2013.09.002

Innocenti, B., Lopez, B., Salvi, J., 2007. ´ A multi-agent architecture with cooperative fuzzy control for a mobile robot. Robotics and Autonomous Systems 55 (12), 881 – 891, robotics and Autonomous Systems in the 50th Anniversary of Artificial Intelligence Campus Multidisciplinary in Perception and Intelligence. DOI: http://dx.doi.org/10.1016/j.robot.2007.07.007

Izquierdo, L., Galán, J. M., Santos, J. I., del Olmo, R., 2008. Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas. Empiria: Revista de metodología de ciencias sociales 16, 85–112.

Leombruni, R., Richiardi, M., Sep. 2005. Why are economists sceptical about agent-based simulations? Physica A: Statistical Mechanics and its Applications 355 (1), 103–109. DOI: http://dx.doi.org/10.1016/j.physa.2005.02.072

Lo, S. K., 2012. A collaborative multi-agent message transmission mechanism in intelligent transportation system - a smart freeway example. Information Sciences 184 (1), 246 – 265. DOI: http://dx.doi.org/10.1016/j.ins.2011.08.024

Luck, M., McBurney, P., Shehory, O., Willmott, S., 2005. Agent Technology: Computing as Interaction (A Roadmap for Agent Based Computing). AgentLink.

Luke, S., Balan, G. C., Panait, L., Cioffi-Revilla, C., Paus, S., 2003. MASON: A Java Multi-Agent Simulation Library. In: Macal, C. M., North, M., Sallach, D. (Eds.), Proceedings of Agent 2003, Conference on Challenges in Social Simulation. Argonne National Laboratory.

Macal, C. M., North, M. J., Dec. 2006. Tutorial on agent-based modeling and simulation part 2: How to model with agents. In: Winter Simulation Conference, 2006. WSC 06. Proceedings of the. pp. 73–83. DOI: http://dx.doi.org/10.1109/wsc.2006.323040

MATLAB, 2010. version 7.10.0 (R2010b). The MathWorks Inc., Natick, Massachusetts.

Minar, N., Burkhart, R.and Langton, C., Askenazi, M., 1996. The swarm simulation system: A toolkit for building multi-agent simulations. Santa Fe Institute working paper 96-06-042. Swarm available at http://www.swarm. org (last visited August 2013).

Pereda, M., Zamarreno, ˜ J. M., Jun. 2011. Agent-based modeling of an activated sludge process in a batch reactor. In: 2011 19th Mediterranean Conference on Control & Automation (MED). IEEE, Corfu, pp. 1128–1133. DOI: http://dx.doi.org/10.1109/MED.2011.5983027

Pereda, M., Zamarreño, J. M., 2014. ”Thermostat II”(Version 3). CoMSES Computational Model Library. Retrieved from: https://www.openabm. org/model/4234/version/3 (last visited June 2014).

Potter, B., Sinclair, J., Till, D., 1996. Introduction to Formal Specification and Z (2nd Edition). Prentice Hall PTR.

Rahmandad, H., Sterman, J., 2008. Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and differential equation models. Management Science 54 (5), 998–1014. DOI: http://dx.doi.org/10.1287/mnsc.1070.0787

Reynolds, C. W., Aug. 1987. Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Computer Graphics 21 (4), 25–34. DOI: http://dx.doi.org/10.1145/37402.37406

Schelling, T. C., 1969. Models of segregation. The American Economic Review 59 (2), 488–493.

Schieritz, N., Milling, P. M., 2003. Modeling the forest or modeling the trees. comparison of sd and ab simulation. In: Proceedings of the 21st International Conference of the System Dynamics Society.

Torsun, I., 1995. Foundations of Intelligent Knowledge-Based Systems. Library and Information Science. Academic Press Limited.

Van Dyke Parunak, H., Savit, R., Riolo, R. L., 1998. Agent-based modeling vs. equation-based modeling: A case study and users´ guide. In: Sichman, J. S. a., Conte, R., Gilbert, N. (Eds.), Multi-Agent Systems and Agent-Based Simulation. Vol. 1534 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 10–25. DOI: http://dx.doi.org/10.1007/10692956 2

Wen, G., Hu, G., Yu, W., Cao, J., Chen, G., 2013. Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs. Systems & Control Letters 62 (12), 1151 – 1158. DOI: http://dx.doi.org/10.1016/j.sysconle.2013.09.009

Wilensky, U., 1997. NetLogo Segregation model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/models/Segregation (last visited March 2013).

Wilensky, U., 1998. NetLogo Thermostat model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/models/Thermostat (last visited March 2013).

Wilensky, U., 1999. NetLogo. Center for Connected Learning and ComputerBased Modeling, Northwestern University, Evanston, IL. http://ccl. northwestern.edu/netlogo/ (last visited March 2013).

Wilensky, U., 2002. NetLogo Crystallization Basic model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/models/ CrystallizationBasic (last visited March 2013).

Wilensky, U., 2007. NetLogo Solid Diffusion model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/models/ SolidDiffusion (last visited March 2013).

Yu, L., Wang, J., 2013. Robust cooperative control for multi-agent systems via distributed output regulation. Systems & Control Letters 62 (11), 1049 – 1056. DOI: http://dx.doi.org/10.1016/j.sysconle.2013.08.005

Zhu, J., 2014. Stabilization and synchronization for a heterogeneous multiagent system via harmonic control. Systems & Control Letters 66 (0), 1 – 7. DOI: http://dx.doi.org/10.1016/j.sysconle.2013.12.019

Abstract Views

828
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912