Modelado de Amortiguadores guiado por sus Diagramas Característicos

Jorge de J. Lozoya Santos, Diana Hernández Alcántara, Rubén Morales Menéndez, Ricardo A. Ramírez Mendoza


Una metodología para modelar amortiguadores guiada por sus diagramas característicos es presentada y validada. Los diagramas característicos del amortiguador son construidos a partir de datos experimentales generados por pruebas estándar: fuerza versus desplazamiento y velocidad versus aceleración. Estos son explorados en las frecuencias de interés. Los diagramas son clasificados en siete patrones, los cuales sirven de guía para construir el modelo matemático el cual puede identificarse con algoritmos convencionales. La metodología es validada con cuatro amortiguadores comerciales de diferentes tecnologías, obteniendo resultados con errores de estimación menores al 5%.

Palabras clave

amortiguador semi-activo; amortiguador pasivo; modelado; metodología; simulación

Texto completo:



Basso, R., 1998. Experimental Characterization of Damping Force in Shock Absorbers with Constant Velocity Excitation. Vehicle System Dynamics 30, 431–442.

Boggs, C. M., 2009. The Use of Simulation to Expedite Experimental Investigations of the Effect of High-Performance Shock Absorbers. Ph.D. thesis, Virginia Polytechnic Institute and State University.

Calvo, J. A., Lopez-Boada, B., Roman, J. L. S., Gauchia, A., 2009. Influence of a Shock Absorber Model on Vehicle Dynamic Simulation. Proc. IMechE Part D: J. Automobile Eng. 223, 189–202.

Carrera-Akutain, X., nolas, J. V., Savall, J., Biera, J., 2006. A Parametric Damper Model Validated on a Track. Int J Heavy Vehicle Syst 13 (3), 145–163.

Çesmeci, S., Engin, T., 2010. Modeling and Testing of a Field-Controllable Magneto-Rheological Fluid Damper. Int J of Mechanical Sciences 52 (8), 1036–1046.

Choi, S.-B., Lee, S.-K., Park, Y.-P., 2001. A Hysteresis Model for FieldDependent Damping Force of a MagnetoRheological Damper. J of Sound and Vibration 245 (2), 375–383.

Codeca, F., S.M.Savaresi, Spelta, C., Montiglio, M., Leluzzi, M., 2008. Identification of An Electro-Hydraulic Controllable Shock Absorber Using BlackBlock Non-Linear Models. In: 17th IEEE Int Conf on Control Applications Part of IEEE Multi-conf on Syst and Control, USA. pp. 462–467.

Coleman, T. F., Li, Y., 1996. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J on Optimization 6, 418–445.

Dixon, J. C., 2008. The Shock Absorber Handbook. Wiley-PEPublishing.

Duym, S., 1997. An Alternative Force State Map for Shock Absorbers. IMechE Proc Instn Mech Engrs Part D 211, 175–179.

Duym, S., 2000. Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics. Vehicle Systems Dynamics 33, 261–285.

Guo, S., Yang, S., Pan, C., 2006. Dynamical Modeling of Magneto-rheological Damper Behaviors. Int. Mater, Sys. and Struct. 17, 3–14.

Heo, S. J., Park, K., Son, S. H., 2003. Modelling of Continuously Variable Damper for Design of Semi-Active Suspension Systems. Int J of Vehicle Design 1, 41–57.

Hong, K. S., Sohn, H. C., Hedrick, J. K., 2002. Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardwarein-the-Loop Tuning. J. Dyn. Sys., Meas., Control 124 (1), 158–167.

Joarder, M. N., 2003. Influence of Nonlinear Asymmetric Suspension Properties on the Ride Characteristics of Road Vehicle. Master’s thesis, Concordia University, Canada.

Kwok, N. M., Ha, Q. P., Nguyen, T. H., Li, J., Samali, B., 2006. A Novel Hysteretic Model for Magneto-Rheological Fluid Dampers and Parameter Identification using Particle Swarm Optimization. Sensors and Actuators A: Physical 132, 441–451.

Ma, X. Q., Rakheja, S., Su, C. Y., 2007. Development and Relative Assessments of Models for Characterizing the Current Dependent Hysteresis Properties of MagnetoRheological Fluid Dampers. J of Intelligent Material Systems and Structures 24 (10), 487–502.

Rakheja, S., Sankar, S., 1985. Vibration and Shock Isolation Performance of a Semi-Active On-Off Damper. J of Vibration, Acoustics, Stress and Reliability in Design 107, 384–403.

Savaresi, S., Bittanti, S., Montiglio, M., 2005a. Identification of Semi-Physical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control. Automatica 41 (1), 113–127.

Savaresi, S., Bittanti, S., Montiglio, M., 1 2005b. Identification of SemiPhysical and Black-Box Non-Linear Models: the Case of MR-Dampers for Vehicles Control. Automatica, 41 (1), 113–127.

Savaresi, S., Silani, E., Bittanti, S., Porciani, N., 2003. On Performance Evaluation Methods and Control Strategies for Semi-Active Suspension Systems. In: The 42nd IEEE Conf on Decision and Control. USA, pp. 2264 – 2269.

Savaresi, S., Spelta, C., July 2007. Mixed Sky-Hook and ADD: Approaching the Filtering Limits of a Semi-Active Suspension. J. Dyn. Sys., Meas., Control 129 (4), 382–392.

Sims, N. D., Holmes, N. J., Stanway, R., 2004. A Unified Modeling and Model Updating Procedure for ElectroRheological and MagnetoRheological Vibration Dampers. Smart Mater Structs 13, 100–121.

Voronoi, G., 1908. Nouvelles Applications des Parametres Continus a la Theorie des formes Quadratiques. J fur die Reine und Angewandte Mathematik ¨ 133, 97–178.

Wang, L. X., Kamath, H., 2006. Modelling Hysteretic Behaviour in MR Fluids and Dampers using Phase-Transition Theory. Smart Mater. Struct. 15, 1725– 1733.

Warner, B., 1996. An Analytical and Experimental Investigation of High Performance Suspension Dampers. Ph.D. thesis, Concordia University, Canada.

Wright, M. H., 1995. Direct Search Methods: Once Scorned, Now Respectable. In: Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis.

Yonaba, H., Anctil, F., Fortin, V., 2010. Comparing Sigmoid Transfer Functions for Neural Network Multistep Ahead Streamflow Forecasting. J of Hydrologic Eng 15, 275–283.

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load
Zheng Lu, Yuling Yang, Xilin Lu, Chengqing Liu
Applied Sciences  vol: 7  num.: 2  primera página: 201  año: 2017  
doi: 10.3390/app7020201

Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912