Estabilidad de sistemas Takagi-Sugeno bajo perturbaciones persistentes: estimación de conjuntos inescapables
DOI:
https://doi.org/10.1016/j.riai.2015.09.007Palabras clave:
Takagi-Sugeno, Rechazo a perturbaciones, Conjunto inescapable, Estabilidad local, LMI, Perturbaciones persistentesResumen
El presente trabajo analiza el comportamiento de sistemas borrosos Takagi-Sugeno ante perturbaciones persistentes (caracterizadas bien por cotas conocidas de amplitud o de potencia en media cuadrática). El análisis se centra en validar que, ante una determinada cota de potencia de perturbaciones y región de condiciones iniciales, existe una región inescapable (contenida en la región donde el modelo TS es válido como modelo de un sistema no lineal subyacente). Algunos de los problemas planteados se formulan como problemas de desigualdades matriciales lineales (LMI), posibles de resolver de forma óptima por programación semidefinida, y otros serán productos de matrices variables de decisión y dos escalares (BMI), que son resueltos de forma iterativa.Descargas
Citas
Abedor, J., Nagpal, K., Poolla, K., 1996. A linear matrix inequality approach to peak-to-peak gain minimization. International Journal of Robust and Nonlinear Control 6 (9-10), 899–927.
Bhattacharyya, S. P., Chapellat, H., Keel, L. H., 1995. Robust control. PrenticeHall Upper Saddle River, New Jersey.
Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. No. 15 en SIAM studies in applied mathematics. SIAM.
Chen, C.-W., Yeh, K., Chiang, W.-L., Chen, C.-Y., Wu, D.-J., 2007. Modeling, H∞ control and stability analysis for structural systems using takagi-sugeno fuzzy model. Journal of Vibration and Control 13 (11), 1519–1534.
Chesi, G., 2011. Domain of Attraction Analysis and Control Via Sos Programming. Springer Verlag.
Feng, G., 2006. A survey on analysis and design of model-based fuzzy control systems. Fuzzy systems, IEEE Transactions on 14 (5), 676–697.
Genesio, R., Tartaglia, M., Vicino, A., ago 1985. On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. on Aut. Control 30 (8), 747 – 755.
Goh, K., Turan, L., Safonov, M., Papavassilopoulos, G., Ly, J., June 1994. Biaffine matrix inequality properties and computational methods. En: American Control Conference, 1994. Vol. 1. pp. 850–855 vol.1.
Guerra, T. M., Kruszewski, A., Lauber, J., 2009. Discrete Tagaki-Sugeno models for control: Where are we? Annual Reviews in Control 33 (1), 37 – 47.
Hancock, E. J., Papachristodoulou, A., feb 2013. Generalised absolute stability and sum of squares. Automatica.
Jaadari, A., 2013. Continuous quasi-LPV systems: how to leave the quadratic framework? Tesis doctoral, Universite de Valenciennes et du Hainaut- ´ Cambresis (France), Universitat Politecnica ` de Valencia (Spain). ` URL: http://hdl.handle.net/10251/31379
Johansson, M., Rantzer, A., Arzen, K.-E., dec 1999. Piecewise quadratic stability of fuzzy systems. Fuzzy Systems, IEEE Transactions on 7, 713–722.
Kanev, S., Scherer, C., Verhaegen, M., Schutter, B. D., 2004. Robust outputfeedback controller design via local {BMI} optimization. Automatica 40 (7), 1115 – 1127.
Khalil, H. K., 2002. Nonlinear Systems, 3a Edicion. Prentice Hall. ´
Klug, M., Castelan, E. B., Coutinho, D., 2015. A T-S fuzzy approach to the local stabilization of nonlinear discrete-time systems subject to energy-bounded disturbances. Journal of Control, Automation and Electrical Systems 26 (3), 191–200.
Ksontini, M., Delmotte, F., Guerra, T.-M., Kamoun, A., Oct 2003. Disturbance rejection using takagi-sugeno fuzzy model applied to an interconnected tank system. En: Systems, Man and Cybernetics, 2003. IEEE International Conference on. Vol. 4. pp. 3352–3357 vol.4.
Liu, X., Zhang, Q., 2003. Approaches to quadratic stability conditions and H∞ control designs for ts fuzzy systems. Fuzzy Systems, IEEE Transactions on 11 (6), 830–839.
Matía, F., Marichal, G. N., Jiménez, E. (Eds.), 2014. Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press.
Murphy, G. M., 2011. Ordinary differential equations and their solutions. Courier Dover Publications.
Palhares, R. M., Peres, P. L., 2000. Robust filtering with guaranteed energy-topeak performance - an lmi approach. Automatica 36 (6), 851–858.
Pitarch, J. L., Sala, A., Ariño, C. V., Apr 2014. Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models. Cybernetics, IEEE Transactions on 44 (4), 526–538.
Pitarch, J. L., Sala, A., Ariño, C. V., Bedate, F., 2012. Estimación del dominio de atracción de sistemas no lineales mediante modelos borrosos polinomiales. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 9 (2), 152 – 161.
Pitarch, J. L., Sala, A., Bedate, F., Ariño, C. V., Sep 2013. Inescapable-set estimation for nonlinear systems with non-vanishing disturbances. En: 3rd IFAC Inter. Conf. on Intelligent Control and Automation Science (ICONS). Chengdu, China, pp. 457–462.
Sala, A., 2009. On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annual Reviews in Control 33 (1), 48 – 58.
Salcedo, J. V., Martínez, M., García-Nieto, S., 2008. Stabilization conditions of fuzzy systems under persistent perturbations and their application in nonlinear systems. Engineering Applications of Artificial Intelligence 21 (8), 1264 – 1276.
Scherer, C., Weiland, S., 2004. Linear matrix inequalities in control. Notes for a course of the Dutch Institute of Systems and Control. URL: http://www.cs.ele.tue.nl/SWeiland/lmid.pdf
Slotine, J.-J. E., 1991. Applied nonlinear control. Prentice Hall, Englewood Cliffs, N.J.
Tadeo, F., Grimble, M., Dec 2002. Advanced control of a hydrogen reformer. Computing Control Engineering Journal 13 (6), 305–314.
Tanaka, K., Wang, H. O., 2001. Fuzzy control systems design and analysis: a linear matrix inequality approach, 2a Edicion. ´ Wiley-Interscience publication. John Wiley and Sons.
Wang, H., Tanaka, K., Griffin, M., feb 1996. An approach to fuzzy control of nonlinear systems: stability and design issues. Fuzzy Systems, IEEE Transactions on 4, 14–23.
Wang, L., Liu, X., 2013. Local analysis of continuous-time Takagi-Sugeno fuzzy system with disturbances bounded by magnitude or energy: A Lagrange multiplier method. Information Sciences 248, 89 – 102.
Descargas
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)