Metodología formal de análisis del comportamiento dinámico de sistemas no lineales mediante lógica borrosa

Antonio Javier Barragán, Basil Mohammed Al-Hadithi, José Manuel Andújar, Agustín Jiménez

Resumen

Tener la capacidad para analizar un sistema desde un punto de vista dinámico puede ser muy útil en muchas circunstancias (sistemas industriales, biológicos, económicos,. ..). El análisis dinámico de un sistema permite conocer su comportamiento y la respuesta que presentará a distintos estímulos de entrada, su estabilidad en lazo abierto, tanto local como global, o si está afectado por fenómenos no lineales, como ciclos límites o bifurcaciones, entre otros. Si el sistema es desconocido o su dinámica es lo suficientemente compleja como para no poder obtener un modelo matemático del mismo, en principio no sería posible realizar un análisis dinámico formal del sistema. En estos casos la lógica borrosa, y más concretamente los modelos borrosos de tipo Takagi-Sugeno (TS), se presentan como una herramienta muy poderosa de análisis y diseño. Los modelos borrosos TS son aproximadores universales tanto de una función como de su derivada, por lo que permiten modelar sistemas no lineales en base a datos de entrada/salida. Puesto que un modelo borroso es un modelo matemático formalmente hablando, a partir del mismo es posible estudiar aspectos de la dinámica del sistema real que modela tal como se hace en la teoría de control no lineal. En este artículo se presenta una metodología para la obtención de los estados de equilibrio de un sistema no lineal, la linealización exacta de su modelo borroso de estado completamente general, el estudio de la estabilidad local de los equilibrios a partir de dicha linealización, y la utilización de la metodología de Poincare para el estudio de órbitas periódicas en modelos borrosos. A partir de esa información, es posible estudiar la estabilidad local de los estados de equilibrio, así como la dinámica del sistema en su entorno y la presencia de oscilaciones, obteniéndose una valiosa información del comportamiento dinámico del sistema.

Palabras clave

Análisis dinámico; estabilidad; estado de equilibrio; linealización; metodología de Poincaré; modelado borroso; sistemas dinámicos; Takagi-Sugeno (TS) model

Texto completo:

PDF

Referencias

Abraham, R. H., Shaw, C. D., 1997. Dynamics: The Geometry of Behavior. Aerial Press, Incorporated.

Al-Hadithi, B. M., Jiménez, A., Matía, F., Andújar, J. M., Barragán, A. J., Aug. 2014. New concepts for the estimation of Takagi-Sugeno model based on extended Kalman filter. En: Matía, F., Marichal, G. N., Jiménez, E. (Eds.), Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press, pp. 3–24. DOI: 10.2991/978-94-6239-082-9_1

Al-Hadithi, B. M., Jiménez Avello, A., Matía, F., Sep. 2012. New methods for the estimation of Takagi–Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems. Optimal Control Applications and Methods 33 (5), 552–575. DOI: 10.1002/oca.1014

Andújar, J. M., Aroba, J., Torre, M. L. d. l., Grande, J. A., Jan. 2006. Contrast of evolution models for agricultural contaminants in ground waters by means of fuzzy logic and data mining. Environmental Geology 49 (3), 458–466. DOI: 10.1007/s00254-005-0103-2

Andújar, J. M., Barragán, A. J., Sep. 2005. A methodology to design stable nonlinear fuzzy control systems. Fuzzy Sets and Systems 154 (2), 157–181. DOI: 10.1016/j.fss.2005.03.006

Andújar, J. M., Barragán, A. J., Apr. 2014. Hybridization of fuzzy systems for modeling and control. Revista Iberoamericana de Automática e Informática Industrial {RIAI} 11 (2), 127–141. DOI: http://dx.doi.org/10.1016/j.riai.2014.03.004

Andújar, J. M., Barragán, A. J., Al-Hadithi, B. M., Matía, F., Jiménez, A., Aug. 2014a. Stable fuzzy control system by design. En: Matía, F., Marichal, G. N., Jiménez, E. (Eds.), Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press, pp. 69–94. DOI: 10.2991/978-94-6239-082-9_4

Andújar, J. M., Barragán, A. J., Al-Hadithi, B. M., Matía, F., Jiménez, A., Aug. 2014b. Suboptimal recursive methodology for Takagi-Sugeno fuzzy models identification. En: Matía, F., Marichal, G. N., Jiménez, E. (Eds.), Fuzzy Modeling and Control: Theory and Applications. Vol. 9 of Atlantis Computational Intelligence Systems. Atlantis Press, pp. 25–47. DOI: http://dx.doi.org/10.2991/978-94-6239-082-9_2

Andújar, J. M., Barragán, A. J., Gegúndez, M. E., Oct. 2009. A general and formal methodology for designing stable nonlinear fuzzy control systems. IEEE Transactions on Fuzzy Systems 17 (5), 1081–1091. DOI: 10.1109/TFUZZ.2009.2021984

Andújar, J. M., Bravo, J. M., Mar. 2005. Multivariable fuzzy control applied to the physical-chemical treatment facility of a cellulose factory. Fuzzy Sets and Systems 150 (3), 475–492. DOI: 10.1016/j.fss.2004.03.023

Andújar, J. M., Bravo, J. M., Peregrín, A., Dec. 2004. Stability analysis and synthesis of multivariable fuzzy systems using interval arithmetic. Fuzzy Sets and Systems 148 (3), 337–353. DOI: 10.1016 issn = 0165-0114,/j.fss.2004.01.008

Angelov, P., Buswell, R., Oct. 2002. Identification of evolving fuzzy rule-based models. IEEE Transactions on Fuzzy Systems 10 (5), 667–677. DOI: 10.1109/TFUZZ.2002.803499

Angelov, P. P., Filev, D. P., Feb. 2004. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 34 (1), 484–498. DOI: 10.1109/TSMCB.2003.817053

Aroba, J., Grande, J. A., Andújar, J. M., De La Torre, M. L., Riquelme, J. C., Sep. 2007. Application of fuzzy logic and data mining techniques as tools for qualitative interpretation of acid mine drainage processes. Environmental Geology 53 (1), 135–145. DOI: 10.1007/s00254-006-0627-0

Babuška, R., Mar. 1995. Fuzzy modeling - a control engineering perspective. En: Proceedings of FUZZ-IEEE/IFES’95. Vol. 4. Yokohama, Japan, pp. 1897–1902. DOI: 10.1109/FUZZY.1995.409939

Babuška, R., Verbruggen, H. B., Mar. 1995. A new identification method for linguistic fuzzy models. En: Proceedings of FUZZ-IEEE/IFES’95. Vol. 4. Yokohama, Japan, pp. 905–912. DOI: 10.1109/FUZZY.1995.409939

Barragán, A. J., Al-Hadithi, B. M., Jiménez, A., Andújar, J. M., May 2014. A general methodology for online TS fuzzy modeling by the extended kalman filter. Applied Soft Computing 18 (0), 277––289. DOI: 10.1016/j.asoc.2013.09.005

Bezdek, J. C., Ehrlich, R., Full, W. E., 1984. FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences 10 (2-3), 191–203. DOI: 10.1016/0098-3004(84)90020-7

Chua, L. O., Desoer, C. A., Kuh, E. S., 1987. Linear and nonlinear circuits. McGraw-Hill series in electrical and computer engineering: Circuits and systems. McGraw-Hill Book Company, New York.

Denaï, M. A., Palis, F., Zeghbib, A. H., Jun. 2007. Modeling and control of nonlinear systems using soft computing techniques. Applied Soft Computing 7 (3), 728–738. DOI: 10.1016/j.asoc.2005.12.005

Grande, J. A., Andújar, J. M., Aroba, J., De La Torre, M. L., Beltrán, R., Apr. 2005. Precipitation, pH and metal load in AMD river basins: An application of fuzzy clustering algorithms to the process characterization. Journal of Environmental Monitoring 7 (4), 325–334. DOI: 10.1039/b410795k

Horikawa, S.-I., Furuhashi, T., Uchikawa, Y., Sep. 1992. On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Transactions on Neural Networks 3 (5), 801–806. DOI: 10.1109/72.159069

Jang, J.-S. R., May 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3), 665–685. DOI: 10.1109/21.256541

Jiménez, A., Aroba, J., de la Torre, M. L. d. l., Andújar, J. M., Grande, J. A., 2009. Model of behaviour of conductivity versus pH in acid mine drainage water, based on fuzzy logic and data mining techniques. Journal of Hydroinformatics 2 (11), 147–153. DOI: 10.2166/hydro.2009.015

Kosko, B., Nov. 1994. Fuzzy systems as universal approximators. IEEE Transactions on Computers 43 (11), 1329–1333. DOI: 10.1109/12.324566

Kreinovich, V., Hguyen, H. T., Yam, Y., Jun. 2000. Fuzzy systems are universal approximators for a smooth function and its derivatives. International journal of Intelligent Systems 15 (6), 565–574. DOI: 10.1002/(SICI)1098-111X(200006)15:63.0.CO;2-0

Levenberg, K., 1944. A method for the solution of certain problems in least squares. En: Quart. Appl. Math. Vol. 2. pp. 164–168.

López-Baldán, M. J., García-Cerezo, A., Cejudo, J. M., Romero, A., Apr. 2002. Fuzzy modeling of a thermal solar plant. International Journal of Intelligent Systems 17 (4), 369–379. DOI: 10.1002/int.10026

Marquez, H. J., 2003. Nonlinear control systems. Analysis and design. John Wiley & Sons, Inc.

Mencattini, A., Salmeri, M., Salsano, A., Aug. 2005. Sufficient conditions to impose derivative constraints on MISO Takagi–Sugeno fuzzy logic systems. IEEE Transactions on Fuzzy Systems 13 (4), 454–467. DOI: 10.1109/TFUZZ.2004.841742

Moré, J. J., 1977. The Levenberg-Marquardt algorithm: Implementation and theory. En: Watson, G. (Ed.), Numerical Analysis. Springer Verlag, Berlin, pp. 105–116.

Nguyen, H. T., Sugeno, M., Tong, R. M., Yager, R. R., 1995. Theoretical aspects of fuzzy control. John Wiley Sons, New York, NY, USA.

Nijmeijer, H., Schaft, A. v. d., 1990. Nonlinear dynamical control systems. Springer Verlag, Berlin.

Sastry, S., 1999. Nonlinear system: analysis, stability, and control. Springer, New York.

Slotine, J.-J. E., Li, W., 1991. Applied nonlinear control. Prentice-Hall, NJ.

Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15 (1), 116–132.

Wang, L.-X., 1992. Fuzzy systems are universal approximators. En: IEEE International Conference on Fuzzy Systems. San Diego, CA, USA, pp. 1163– 1170. DOI: 10.1109/FUZZY.1992.258721

Wang, L. X., 1994. Adaptive fuzzy systems and control. Prentice Hall, New Jersey.

Wang, L.-X., 1997. A course in fuzzy systems and control. Prentice Hall, New Yersey, USA.

Wiggins, S., Oct. 2003. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd Edición. Texts in Applied Mathematics. Springer.

Wong, L., Leung, F., Tam, P., Jul. 1997. Stability design of TS model based fuzzy systems. En: IEEE International Conference on Fuzzy Systems. Vol. 1. Barcelona, Spain, pp. 83–86. DOI: 10.1109/FUZZY.1997.616349

Abstract Views

720
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Fuel Cell Output Current Prediction with a Hybrid Intelligent System
José-Luis Casteleiro-Roca, Antonio Javier Barragán, Francisca Segura, José Luis Calvo-Rolle, José Manuel Andújar
Complexity  vol: 2019  primera página: 1  año: 2019  
doi: 10.1155/2019/6317270



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912