Controlador Predictivo No Lineal para la Gestión Energética del Sistema Centralizado de Aire Acondicionado de un Inmueble Hotelero

Adriana Acosta, Ana I. González, Jesús M. Zamarreño, Víctor Álvarez

Resumen

En este trabajo se reflejan los resultados obtenidos durante la sintonía de un controlador predictivo basado en modelo no lineal, para la gestión energética del sistema centralizado de climatización de una instalación hotelera. Con el objetivo de lograr eficiencia económica, el diseño del controlador emplea un modelo de predicción del comportamiento del consumo energético de las habitaciones a partir de los registros históricos del hotel. La predicción de la carga térmica de las habitaciones se calcula utilizando el método de series de tiempo radiantes (RTS). La sintonía y simulación del controlador fue realizada con MATLAB®.

Palabras clave

Control predictivo basado en modelo; método RTS; carga térmica; consumo eléctrico; hotel

Texto completo:

PDF

Referencias

Acosta C. A., González A. I., Zamarreño J.M. and Castelló V., 2008. “A model for energy predictions of a hotel room” 20th European Modeling & Simulation Symposium, (Simulation in Industry). EMSS 2008. Briatico, Italy.

Acosta C. A., González A. I., Zamarreño J.M. and Castelló V., 2011. “Modelo para la predicción energética de una instalación hotelera”. Revista Iberoamericana de Automática e Informática 8, 309-322.

Allgöwer F., Findeisen R., Ebenbauer C. 2002. “Nonlinear Model Predictive Control”. Institute for systems theory in engineering, University of Stuttgart, Germany.

Álvarez J.D., Redondo J.L., Camponogarac E., Normey-Rico J.E., Berenguel M., Ortigosa P.M., 2013 “Optimizing building comfort temperature regulation via model predictive control”. Energy and Buildings 57, 361– 372.

ASHRAE, 2001. ASHRAE Handbook. Chapter 31, “Energy Estimating and Modeling Methods”. ASHRAE Handbook Editor.

ASHRAE, 2007. ASHRAE Handbook. Chapter 5, “Hotels, Motels, and Dormitories”. ASHRAE Handbook Editor.

ASHRAE, 2009. ASHRAE Handbook. Chapter 18, “Nonresidential cooling and heating load calculations”. ASHRAE Handbook Editor.

Borreli Ma,Y., F, Hencey B., Coffey B., BEGEA S., 2010. “Model predictive control for operation of building cooling systems”. In 2010 American Control Conference, ACC 2010. Baltimore, Maryland, USA.

Camacho, E.F., Bordons C., 2004. Model Predictive Control, Second edition. Springer-Verlag.

Castilla M., Álvarez J.D., Berenguel M., Pérez M., Rodríguez F. and Guzmán J.L., 2010. “Técnicas de control de confort en edificios”. Revista Iberoamericana de Automática e Informática 7, 5-24.

Castilla M., Álvarez J.D., Normey-Rico J.E. and Rodríguez F., 2012. “A nonlinear model based predictive control strategy to maintain thermal comfort inside a bioclimatic building”. 20th Mediterranean Conference on Control & Automation (MED). Barcelona. Spain, July 3-6.

Colmenar-Santos A., Terán de Lober L. N., Borge-Diez D., Castro-Gil M., 2013. “Solutions to reduce energy consumption in the management of large buildings”. Energy and Buildings 56, 66–77.

Gongsheng H. and Tin-Tai Ch., 2011“. Uncertainty shift in robust predictive control design for application in CAV air-conditioning systems”. Building Services Engineers Res. Technol., 32.4, 329-343. htpp://bse.sagepub.com/.

Hao H. and Lei C., 2013. “Multi-zone temperature prediction in a commercial building using artificial neural network model”. 10th IEEE International Conference on Control and Automation (ICCA) Hangzhou, China, June 12-14.

Keblawi, A., Ghaddar N., Ghali K., 2011. “Model-based optimal supervisory control of chilled ceiling displacement ventilation system”. Energy and Buildings 43, 1359–1370.

Ma J., Qin J., Salsbury T. and Xu P., 2012. “Demand reduction in building energy systems based on economic model predictive control”. Chemical Engineering Science 67, 92-100.

Maciejowski, J.M., 2000. “Predictive Control with constraints”. Prentice Hall Editor. An imprint of Pearson Education. Harlow, England.http://www.booksites.net/maciejowski.

Marik K., Rojicek J., Stluka P. and Vass J., 2011. “Advanced HVAC Control: Theory vs. Reality”. Preprints of the 18th IFAC World Congress. Milano. Italy. pp. 3108-3113.

MathWorks, 2011. Matlab 7.12.0. Ayuda de la herramienta de simulación.

Salsbury T., Mhaskar P. and Qin S., 2013. “Predictive Control Methods to Improve Energy Efficiency and Reduce Demand in Buildings”, Comp. & Chem. Eng. 51, 77-85.

Seng I.,1999. “Experimental validation of the Radiant Time Series Method for cooling load calculations”. Thesis of Bachelor of Science. University of Macau. Taipa, Macau.

Vega B.G., Bombino O., Cigler J., Oldewurtel F., Rodríguez M. Á., 2013. “Model Predictive Control for a Tropical Island Hotel”. Paper ID 975. CLIMA 2013: 11th REHVA World Congress & 8th International Conference on IAQVEC. Czech Republic.

Abstract Views

1236
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers
Adriana Acosta, Ana I. González, Jesús M. Zamarreño, Víctor Álvarez
Energy and Buildings  vol: 129  primera página: 59  año: 2016  
doi: 10.1016/j.enbuild.2016.07.061



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912