Control desacoplado de un actuador de rigidez variable para robots asistenciales

J. Medina, A. Jardón, C. Balaguer

Resumen

Los actuadores de rigidez variable son dispositivos que permiten cambiar la posición y rigidez articular de un robot en forma simultánea. En los últimos años se han diseñado y desarrollado muchos dispositivos de este tipo, con la esperanza de favorecer la seguridad en la interacción humano-robot y mejorar el rendimiento dinámico de los robots. En este artículo se presenta el desarrollo de un controlador para un actuador de rigidez variable de configuración serie. La estrategia de control se basa en la linealización por realimentación y el ajuste de dos controladores lineales. Esta estrategia permite el seguimiento de referencias de posición y rigidez articular de forma simultánea y desacoplada. Además, se realizan simulaciones en las que se incorpora este dispositivo dentro del robot asistencial ASIBOT, a fin de evaluar el desempeño del controlador, los cambios en la dinámica del robot y las posibles ventajas que tendrá la inclusión del mismo a nivel de seguridad en la interacción física humano-robot.

Palabras clave

control de robot; sistemas no lineales; linealización por realimentación; interacción hombre/máquina

Texto completo:

PDF

Referencias

Ahmed, M., Kalaykov, I., 2010. Semi-active compliant robot enabling collision safety for human robot interaction. In: Mechatronics and Automation (ICMA), 2010 International Conference on. pp. 1932–1937.

Bicchi, A., Rizzini, S., Tonietti, G., 2001. Compliant design for intrinsic safety: general issues and preliminary design. In: Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on. Vol. 4. pp. 1864–1869 vol.4.

Bicchi, A., Tonietti, G., Bavaro, M., Piccigallo, M., 2005. Variable stiffness actuators for fast and safe motion control. In: Robotics Research. The Eleventh International Symposium. Springer, pp. 527–536.

Caldwell, D., Medrano-Cerda, G., Goodwin, M., 1995. Control of pneumatic muscle actuators. Control Systems, IEEE 15 (1), 40–48.

Catalano, M., Grioli, G., Garabini, M., Bonomo, F., Mancinit, M., Tsagarakis, N., Bicchi, A., 2011. Vsa-cubebot: A modular variable stiffness platform for multiple degrees of freedom robots. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. pp. 5090–5095.

Choi, J., Hong, S., Lee, W., Kang, S., 2009. A variable stiffness joint using leaf springs for robot manipulators. In: Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on. pp. 4363–4368.

David Braun, M. H., Vijayakumar, S., 2012. Optimal variable stiffness control: Formulation and application to explosive movement tasks. Autonomous Robots 33 (3), 237–253.

De Luca, A., Book, W. J., 2008. Robots with flexible elements. Springer Handbook of Robotics, 287-319 (2008).

De Luca, A., Lucibello, P., 1998. A general algorithm for dynamic feedback linearization of robots with elastic joints. In: Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on. Vol. 1. pp. 504–510 vol.1.

Garabini, M., Passaglia, A., Belo, F., Salaris, P., Bicchi, A., 2011. Optimality principles in variable stiffness control: The vsa hammer. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. pp. 3770–3775.

Goris, K., Saldien, J., Vanderborght, B., Lefeber, D., 2011. Mechanical design of the huggable robot probo. International Journal of Humanoid Robotics 08 (03), 481–511.

Grebenstein, M., Albu-Schaï ¿ ½ ffer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., Gruber, R., Haddadin, S., Hagn, U., Haslinger, R., Hoppner, H., Jorg, S., Nickl, M., Nothhelfer, A., Petit, F., Reill, J., Seitz, N., Wimbock, T., Wolf, S., Wusthoff, T., Hirzinger, G., 2011. The dlr hand arm system. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. pp. 3175–3182.

Groothuis, S. S., Rusticelli, G., Zucchelli, A., Stramigioli, S., Carloni, R., 2012. The vsaut-ii: A novel rotational variable stiffness actuator. In: Proceedings of the International Conference on Robotics and Automation, St. Paul, USA.

Haddadin, S., Albu-Schaffer, A., Frommberger, M., Rossmann, J., Hirzinger, G., May 2009. Towards a standard crash-testing protocol for robot safety - part i: Results. In: Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on. pp. 272–279.

Haddadin, S., Laue, T., Frese, U., Hirzinger, G., 2007. Foul 2050: thoughts on physical interaction in human-robot soccer. In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on. pp. 3243– 3250.

Hogan, N., 1985. Impedance control: An approach to manipulation: Part ill applications. Journal of dynamic systems, measurement, and control 107 (2), 17.

Ikuta, K., Nokota, M., Ishii, H., 2000. Safety evaluation method of human-care robot control. In: Micromechatronics and Human Science, 2000. MHS 2000. Proceedings of 2000 International Symposium on. pp. 119–127.

Isidori, A., 1995. Nonlinear Control Systems, 3rd Edition. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Jafari, A., Tsagarakis, N., Caldwell, D., 2011. Awas-ii: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. pp. 4638–4643.

Jafari, A., Tsagarakis, N., Vanderborght, B., Caldwell, D., 2010. A novel actuator with adjustable stiffness (awas). In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. pp. 4201–4206.

Jardon, A., Victores, J., Martinez, S., Gimenez, A., Balaguer, C., July 2012. Personal autonomy rehabilitation in home environments by a portable assistive robot. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 42 (4), 561–570.

Khatib, O., 1995. Inertial properties in robotic manipulation: An object-level framework. The International Journal of Robotics Research 14 (1), 19–36. URL http://ijr.sagepub.com/content/14/1/19.abstract

Lee, J., Sep 1997. A study on the manipulability measures for robot manipulators. In: Intelligent Robots and Systems, 1997. IROS ’97., Proceedings of the 1997 IEEE/RSJ International Conference on. Vol. 3. pp. 1458–1465 vol.3.

Li, Z., Vanderborght, B., Tsagarakis, N., Colasanto, L., Caldwell, D., 2012. Stabilization for the compliant humanoid robot coman exploiting intrinsic and controlled compliance. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on. pp. 2000–2006.

Lozano, R., Brogliato, B., 1992. Adaptive control of robot manipulators with flexible joints. Automatic Control, IEEE Transactions on 37 (2), 174–181.

Ozgoli, S., Taghirad, H. D., 2004. A survey on the control of flexible joint robots.

Palli, G., Melchiorri, C., De Luca, A., 2008. On the feedback linearization of robots with variable joint stiffness. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. pp. 1753–1759.

Petit, F., Chalon, M., Friedl, W., Grebenstein, M., Albu-Schaï ¿1/2 ffer, A., Hirzinger, G., 2010. Bidirectional antagonistic variable stiffness actuation: Analysis, design amp; implementation. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on. pp. 4189–4196.

Pfeifer, R., Bongard, J., 2006. How the body shapes the way we think: a new view of intelligence. MIT press.

Pfeifer, R., Lungarella, M., Iida, F., 2007. Self-organization, embodiment, and biologically inspired robotics. science 318 (5853), 1088–1093.

Pratt, G., Williamson, M., 1995. Series elastic actuators. In: Intelligent Robots and Systems 95. ’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on. Vol. 1. pp. 399–406 vol.1.

Schiavi, R., Grioli, G., Sen, S., Bicchi, A., 2008. Vsa-ii: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. pp. 2171–2176.

Vanderborght, B., Tsagarakis, N. G., Ham, R. V., Thorson, I., Caldwell, D. G., 2011. Maccepa 2.0: compliant actuator used for energy efficient hopping robot chobino1d. Auton. Robots, 55–65.

Vanderborght, B., Van Ham, R., Verrelst, B., Van Damme, M., Lefeber, D., 2008. Overview of the lucy project: Dynamic stabilization of a biped powered by pneumatic artificial muscles. Advanced Robotics 22 (10), 1027–1051.

Versace, J., Jun. 1971. A review of severity index. 15th Stapp Conference, SAE Technical Paper, 35–47.

Villegas, D., Van Damme, M., Vanderborght, B., Beyl, P., Lefeber, D., 2012. Third generation pleated pneumatic artificial muscles for robotic applications: Development and comparison with mckibben muscle. Advanced Robotics 26 (11-12), 1205–1227.

Wolf, S., Eiberger, O., Hirzinger, G., 2011. The dlr fsj: Energy based design of a variable stiffness joint. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. pp. 5082–5089.

Wolf, S., Hirzinger, G., 2008. A new variable stiffness design: Matching requirements of the next robot generation. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. pp. 1741–1746.

Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schaeffer, A., Burdet, E., 2011. Human-like adaptation of force and impedance in stable and unstable interactions. Robotics, IEEE Transactions on 27 (5), 918–930.

Zeng, L., Bone, G., May 2008. Design of foam covering for robotic arms to ensure human safety. In: Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on. pp. 001145–001150.

Abstract Views

776
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912