Herramienta para la sintonía robusta de controladores PI/PID de dos grados de libertad

Roger Moliner, Rafael Tanda

Resumen

Se presenta un método de sintonía robusta para controladores PI/PID de dos grados de libertad. La propuesta se formuló como un problema de optimización no-convexo sujeto a restricciones, en el cual, se minimizó el valor de funciones objetivo basadas en la integral del error absoluto, fragilidad del controlador y esfuerzo de la señal de control. La solución se realizó con el algoritmo de Optimización por Enjambre de Partículas. El diseño, que parte de un modelo de planta, se desacopló para respuestas a perturbaciones de carga y a cambios en el punto de consigna. La robustez se expresó como una restricción basada en la sensibilidad máxima Ms y sensibilidad complementaria Mt. La propuesta se comparó con los métodos MIGO y SIMC, concluyendo que diseñar controladores PI teniendo en cuenta los círculos Ms y Mt garantiza mayor estabilidad relativa del sistema de control al variar la ganancia estática del proceso.

Palabras clave

Control PID; Sintonía; Robustez; Optimización; Control de procesos; Optimización por Enjambre de Partículas

Texto completo:

PDF

Referencias

Alfaro, V.M., 2007. PID controllers’ fragility. ISA Transactions 46. pp. 555- 559

Alfaro, V.M., Vilanova, R., Arrieta, O., 2008. “Analytical Robust Tuning of PI controllers for First-Order-Plus-Dead-Time Processes,” in 13th IEEE International Conference on Emerging Technologies and Factory Automation, September 15-18, Hamburg-Germany.

Alfaro, V.M., Vilanova, R., Arrieta, O., 2008. Two-degree-of-freedom PI/PID controller tuning approach for smooth control on cascade control systems. In: Proc. 47th IEEE Conference on Decision and Control, Mexico, pp. 5680-5685.

Alfaro, V.M., Vilanova, R., Arrieta, O., 2009a. Robust tuning of two-degreeof- freedom (2-DoF) PI/PID based cascade control systems. J. Process Control 19, 1658-1670.

Alfaro, V.M., Arrieta, O., Vilanova, R., 2009b. Control de Dos-Grados-de Libertad (2Gdl) aplicados al “Benchmark” de Sistemas para Controladores PID. Revista Iberoamericana de Automática e Informática Industrial. Vol. 6, No. 2, pp. 59-67.

Alfaro, V.M., Vilanova R., Arrieta O., 2009c. Considerations on Set-Point Weight choice for 2-DoF PID Controllers, in IFAC International Symposium on Advanced Control on Chemical Process(ADCHEM 2009) Istambul, Turkey.

Alfaro, V.M., Vilanova, R., 2010. Sintonización de los controladores PID de 2GdL: desempeño, robustez y fragilidad. In XIV Congreso Latinoamericano de Control Automático (CLCA 2010) Santiago, Chile. pp. 267-272.

Alfaro, V. M., Vilanova, R., Arrieta, O., 2010. Maximum Sensivity Based Robust Tuning for Two-Degree-of-Freedom Proportional-Integral Controllers. Ind. Eng. Chem. Res. 49, 5415–5423.

Araki, M., 1984. On two-degree-of-freedom PID control system. Tech. Rep., SICE Research Committee on Modeling and Control Design of Real Systems.

Araki, M., 1985. Two-degree-of-freedom control system—I. Syst. Control 29, 649-656

Araki, M., 1988. Two degree-of-freedom PID controller. Syst. Control Inf. 42, 18–25.

Åström, K.J., Hägglund, T., 1995. PID Controllers: Theory, Design and Tuning, 2nd ed. ISA-Instrument Society of America.

Åström, K.J., Panagopoulos, H., Hagglund, T., 1998. Design of PI controllers based on non-convex optimization. Automatica, Vol. 34, No. 5, pp. 585– 601.

Åström, K.J., Hägglund, T., 2004. Revisiting the Ziegler-Nichols step response method for PID control. Journal of Process Control 14, 635–650.

Åström, K.J., Hägglund, T., 2009. Control PID avanzado. Pearson Educación.

Chatterjee, A., Siarry, P., 2006. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research 33 (3), pp. 859-871.

Garpinger, O., 2009. Design of Robust PID Controllers with Constrained Control Signal Activity. In Department of Automatic Control Sweden: Lund University.

Garpinger, O., Hägglund, T., Åström, K.J. 2014. Performance and robustness trade-offs in PID Control. Journal of Process Control 24, pp. 568-577.

Gude, J. J., Kahoraho, E., 2012. Kappa-tau type PI tuning rules for specified robust levels. IFAC Conference on Advances in PID Control PID’12. Brescia (Italy), March 28-30

Jiao, B., Lian, Z., Gu, X.A., 2008. Dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons & Fractals 37, 698-705.

Kennedy, J., Eberhart, R., 1995. Particle Swarm OPtimization, in IEEE International Conference on Neural Networks 4, Perth, Australia, pp. 1942-1948.

Liu, T., Gu, D., Zhang, W., 2005. Decoupling two-degree-of-freedom control strategy for cascade control systems. J. Process Control 15, 159–167.

Lu, X., Yang, Y., Wang, Q., Zheng, W., 2005. A double two-degree-offreedom control scheme for improved control of unstable delay processes. J. Process Control 15, 605–614.

Modares, H., Alfi A., Naghibi, M.-B., 2010. Parameter estimation of bilinear systems base on an adaptative particle swarm optimization, Engineering Applications of Artifitial Intelligence 23, 1105-1111.

Nemati, H., Bagheri, P., 2010. A new approach to tune the two-degree-of-freedom (2DOF). In: Proc. IEEE International Symposium on Computer-Aided Control System Design, Yokohama, Japan, pp. 1819-1824.

O’Dwyer, A., 2012. An Overview of Tuning Rules for the PI and PID Continuous-Time Control of Time-Delayed Single-Input, Single-Output (SISO) Processes. In: PID Control in the Third Millennium - Lessons Learned and New Approaches, R. Vilanova and A. Visioli (Editors), 3-44, Springer-Verlag London Limited.

Rao, A.S., Chidambaram, M., 2006. Enhanced two-degree-of-freedom control strategy for second order unstable processes with time delay. Ind. Eng. Chem. Res. 45, 3604–3614.

Ratnaweera, A., Halgamuge S. K., Watson, H.C., 2004. Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 8, no. 3, pp. 240-255, june.

Reynoso-Meza, G., Sanchis, J., Blasco, X., Martínez, M., 2013. Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas. Revista Iberoamericana de Automática e Informática Industrial 10, 251-268.

Sato, T., Inoue, A., Yamamoto, T., 2008. Two-degree-of-freedom PID controller based on extended generalized minimum variance control. Int. J. Innov. Comput. Inf. Control 4, 3111–3122.

Sedighizadeh, D., Masehian, E., 2009. Particle Swarm Optimization Methods, Taxonomy and Applications. International Journal of Computer Theory and Engineering 1. pp. 486-502.

Shi, Y., Eberhart, R., 1998a. Parameter slection in particle swarm optimization. In: Prodeedings of the Seventh Annual Conference on Evolutionary Programming, New York, pp. 591-600.

Shi, Y., Eberhart, R., 1998b. A modified particle swarm optimizer. In: Proceedings of the Conference on Evolutionary Computation, pp. 69-73.

Skogestad, S., Grimholt, C., 2012. The SIMC Method for Smooth PID Controller Tuning. In: PID Control in the Third Millennium – Lessons Learned and New Approaches, R. Vilanova and A. Visioli (Editors), 147- 175, Springer-Verlag London Limited.

Taguchi, H., Araki, M., 2000. Two-degree-of-freedom PID controllers—their functions and optimal tuning. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 95–100.

Taguchi, H., Kokawa, M., Araki, M.,2002. Optimal tuning of two-degree-offreedom PD controllers. In: Proc. Asian Control Conference, Singapore, pp. 268–273.

Tavakoli, S., Banookh, A., 2010. Robust PI control design using particle swarm optimization. J. Comput. Sci. Eng. 1, pp. 36-41.

Vilanova, R., Alfaro, V.M., 2011. Control PID robusto: Una visión panorámica. Revista Iberoamericana de Automática e Informática Industrial 8, 141-158.

Zhang, J., Wang, J., Zhao, Z., 2006. A novel two-degree-of-freedom PID controller for integrator and dead time process. In: Proc. World Congress on Intelligent Control and Automation, Dalian, China, pp. 6388–6391.

Abstract Views

1278
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912