Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable

Autores/as

  • Róger E. Sánchez-Alonso Instituto politécnico nacional
  • José Joel González Barbosa Instituto politécnico nacional
  • Eduardo Castillo Castañeda Instituto politécnico nacional
  • Mario A. García Murillo Instituto politécnico nacional

DOI:

https://doi.org/10.1016/j.riai.2015.07.007

Palabras clave:

Robot paralelo, Reconfiguración, Cinemática, Teoría de tornillos, Matriz jacobiana, Índice de manipulabilidad

Resumen

Este trabajo presenta el análisis cinemático de un manipulador reconfigurable integrado por dos sub-manipuladores paralelos que comparten una plataforma móvil. Una solución en forma semi-cerrada para el análisis directo de posición del robot es obtenida tomando ventaja de la geometría no plana de la plataforma móvil, mientras que los análisis de velocidad, aceleración y singularidades son desarrollados por medio de teoría de tornillos. Finalmente se propone una aproximación basada en el índice de manipulabilidad de la matriz jacobiana para determinar la configuración geométrica que optimiza el desempeño del manipulador dada una determinada postura de la plataforma móvil.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Angeles, J., 2007. Fundamentals of Robotic Mechanical Systems, Theory, Methods, and Algorithms, Springer International Publishing.

Balmaceda-Santamaría, A., Castillo-Castañeda, E., Gallardo-Alvarado, J., SánchezAlonso, R., 2014. Una familia de manipuladores paralelos reconfigurables tipo Delta, In XVI Congreso Mexicano de Robótica, Mazatlán, México.

Bande, P., Seibt, M., Uhlmann, E., Saha, S., Rao, P., 2005. Kinematics Analyses of Dodekapod, Mechanism and Machine Theory, 40 (6), 740-756.

Brisan, C., 2007 Designing Aspects of a Special Class of Reconfigurable Parallel Robots, In Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications, edited by Tarek Sobh, Khaled Elleithy, Ausif Mahmood and Mohammed Karim, 101-106: Springer International Publishing.

Bonev, I., Zlatanov, D., Gosselin, C., 2003. Singularity analysis of 3-DOF planar parallel mechanisms via screw theory, Journal of Mechanical Design, 125 (3), 573-581.

Carbonari, L., Callegari, M., Palmieri, G., Palpacelli, M.-C., 2014. A new class of reconfigurable parallel kinematic machines, Mechanism and Machine Theory, 79, 173-183.

Chen, Ch-T., 2012. Reconfiguration of a parallel kinematic manipulator for the maximum dynamic load-carrying capacity, Mechanism and Machine Theory, 54, 62-75.

Dasgupta, B., Mruthyunjaya, T.S., 1998, Singularity-free path planning for the Stewart platform manipulator, Mechanism and Machine Theory, 33 (6), 711-725.

du Plessis, L.J., Snyman, J.A., 2006. An Optimally Re-Configurable Planar GoughStewart Machining Platform, Mechanism and Machine Theory, 41 (3), 334-357.

Gallardo-Alvarado, J., Rico, J.M., Alici, G., 2006. Kinematics and singularity analyses of a 4-dof parallel manipulator using screw theory, Mechanism and Machine Theory, 41 (9), 1048-1061.

Gallardo-Alvarado, J., Aguilar-Nájera, C.R., Casique-Rosas, L., Pérez González, L., Rico-Martinez, J., 2008. Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory, Multibody System Dynamics, 20 (4), 307-325.

Gan, D., Liao, Q., Dai, J., Wei, Sh., Seneviratne, L.D., 2009. Forward displacement analysis of the general 6-6 Stewart mechanism using Gröbner bases, Mechanism and Machine Theory, 44 (9), 1640-1647.

Gosselin, C., Angeles, J., 1990. Singularity analysis of closed-loop kinematic chains, IEEE Transactions on Robotics and Automation, 6 (3), 281-290.

Husty, M., 1996. An algorithm for solving the direct kinematic of Stewart-Gough type platforms, Mechanism and Machine Theory, 31 (4), 365-379.

Ji, Z., Song, P., 1998. Design of a Reconfigurable Platform Manipulator, Journal of Field Robotics, 15 (6), 341-346.

Jiang, Q., Gosselin, C., 2009. Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform, Mechanism and Machine Theory, 44 (6), 1281-1293.

Kong, X., 2014. Reconfiguration analysis of a 3-DOF parallel mechanism using Euler parameter quaternions and algebraic geometry method, Mechanism and Machine Theory, 74, 188-201.

Kumar, S., Nagarajan, T., Srinivasa, Y.G., 2009. Characterization of reconfigurable Stewart platform for contour generation, Robotics and Computer-Integrated Manufacturing, 25 (4-5), 721-731.

Landeira Freire, M., Sánchez, E., Tejada, S., Diez, R., 2015. Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas, Revista Iberoamericana de Automática e Informática Industrial RIAI, 12 (1), 80-91.

Lee, T.-Y., Shim, J.-K., 2003. Improved dialytic elimination algorithm for the forward kinematics of the general Stewart-Gough platform, Mechanism and Machine Theory, 38 (6), 563-577.

Mayer, B., Gosselin, C., 2000. Singularity Analysis and Representation of the General Gough-Stewart Platform, The International Journal of Robotics Research, 19(3), 271-288.

Merlet, J.-P., 2004. Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis, The International Journal of Robotics Research, 23 (3), 221-235.

Moreno, H., Saltaren, R., Carrera, I., Puglisi, L., Aracil, R., 2012. Índices de Desempeño de Robots Manipuladores: Una Revisión del Estado del Arte, Revista Iberoamericana de Automática e Informática Industrial RIAI, 9 (2), 111-122.

Mu, Z., Kazerounian, K., 2002. A real parameter continuation method for complete solution of forward position analysis of the general Stewart, Journal of Mechanical Design, 124 (2), 236-244.

Omran, A., El-Bayiumi G., Bayoumi, M., Kassem A., 2008. Genetic algorithm based optimal control for a 6-dof non redundant stewart manipulator, International Journal of Mechanical Systems Science and Engineering, 2 (2), 73- 79.

Parikh, P.J., Lam, S.S.Y., 2005. A hybrid strategy to solve the forward kinematics problem in parallel manipulators, IEEE Transactions on Robotics, 21 (1), 18-25.

Plitea, N., Lese, D., Pisla, D., Vaida, C., 2013. Structural design and kinematics of a new parallel reconfigurable robot, Robotics and Computer-Integrated Manufacturing, 29 (1), 219-235.

Raghavan, M., 1993. The Stewart platform of general geometry has 40 configurations, Journal of Mechanical Design., 115 (2), 277-282.

Rico, J.M., Duffy, J.,2000. Forward and inverse acceleration analyses of in-parallel manipulators, Journal of Mechanical Design, 122 (3), 299-303.

Rolland, L., 2005. Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator, Advanced Robotics, 19 (9), 995-1025.

Rolland, L., Chandra, R., 2010. On Solving the Forward Kinematics of the 6-6 General Parallel Manipulator with an Efficient Evolutionary Algorithm, In ROMANSY 18 Robot Design, Dynamics and Control, edited by Vincenzo Parenti Castelli and Werner Schiehlen, 524, 117-124. CISM International Centre for Mechanical Sciences: Springer International Publishing.

Sen, S., Dasgupta, B., Mallik, A., 2003. Variational approach for singularity-free path-planning of parallel manipulators”, Mechanism and Machine Theory, 38 (11), 1165-1183.

Shen, H., Wu, X., 2004. Numerical solution of direct kinematic problems for parallel manipulators based on interval dividing search algorithms, Mechanical Science and Technology, 23.

Simaan, N., Shoham, M., 2003. Stiffness Synthesis of a Variable Geometry SixDegrees-of- Freedom Double Planar Parallel Robot, The International Journal of Robotics Research, 22 (9), 757-775.

Sung-Gaun, K., Ryu, J., 2003. New dimensionally homogeneous jacobian matrix forrmulation by three end-effector points for optimal design of parallel manipulators, IEEE Transactions on Robotics and Automation 19 (4), 731-736.

Ueberle, M., Mock, N., Buss, M., 2004. Vishard10, a novel hyper-redundant haptic interface, In 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 58-65. IEEE.

Voglewede, P.A., Ebert-Uphoff, I., 2004. Measuring “closeness” to singularities for parallel manipulators, In IEEE International Conference on Robotics and Automation. 5, 4539-4544.

Yu, H., Li, B., Wang, Y., Hu, Y., 2012. Conceptual design and workspace analysis of reconfigurable fixturing robots for sheet metal assembly, Assembly Automation, 32 (3), 293-299.

Xi, F., Li, Y., Wang, H., 2011. Module-Based Method for Design and Analysis of Reconfigurable Parallel Robots, Frontiers of Mechanical Engineering, 6 (2), 151- 159.

Yang, G., Chen, I-M., Kiat, W., Huat, S., 2001. Kinematic Design of Modular Reconfigurable in-Parallel Robots, Autonomus Robots, 10 (1), 83-89.

Ye, W., Fang, Y., Zhang, K., Guo, S., 2014. A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain, Mechanism and Machine Theory, 74, 1-9.

Yurt, S.N., Anli, E., Ozkol, I., 2007. Forward kinematics analysis of the 6-3 SPM by using neural networks, Meccanica, 42 (2), 187-96.

Zhang, D., Shi, Q., 2012. Novel Design and Analysis of a Reconfigurable Parallel Manipulator Using Variable Geometry Approach. In Practical Applications of Intelligent Systems, edited by Yingling Wang and Tianrui Li, 124, 447-457. Advances in Intelligent and Soft Computing. Shanghai, China: Springer International Publishing.

Descargas

Publicado

06-04-2016

Cómo citar

Sánchez-Alonso, R. E., González Barbosa, J. J., Castillo Castañeda, E. y García Murillo, M. A. (2016) «Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable», Revista Iberoamericana de Automática e Informática industrial, 13(2), pp. 247–257. doi: 10.1016/j.riai.2015.07.007.

Número

Sección

Artículos