Generación Determinística de Lenguajes Legales para Sistemas de Eventos Discretos

Doyra Mariela Muñoz, Antonio Correcher, Emilio García, Francisco Morant

Resumen

En este artículo se propone una red de Petri, interpretada, estocástica, (st-IPN), como modelo para representar el lenguaje regular obtenido a partir de la combinación de señales de entrada - salida, en un sistema de eventos discretos (SED) en lazo cerrado. Las señales de entrada, son las señales externas que afecten al sistema y las órdenes de control emitidas por el controlador a la planta y las señales de salida son las respuestas de los sensores a las órdenes de control. La st-IPN propuesta, es un generador determinista del lenguaje legal de sistema, capaz de representar secuencias de eventos temporizados de naturaleza estocástica. El modelo propuesto puede ser aplicado a sistemas de gran escala, a partir de la división del sistema en subsistemas, ya que el modelo global puede ser encontrado con base en la composición de los modelos de los subsistemas.

Palabras clave

Modelado de sistemas de eventos discretos; Redes de Petri; Observabilidad temporal

Texto completo:

PDF

Referencias

Ashley, J., 2004. Diagnosis of condition systems. Ph.D. thesis, University of Kentucky.

Ashley, J., Holloway, L., 2004. Qualitative diagnosis of condition systems. Discrete Event Dynamic Systems 14 (4), 395–412.

Basile, F., Chiacchio, P., Coppola, J., De Tommasi, G., june 2011. Identification of petri nets using timing information. En: Dependable Control of Discrete Systems (DCDS), 2011 3rd International Workshop on. pp. 154 –161.

Berthomieu, B., Diaz, M., Mar 1991. Modeling and verification of time dependent systems using time petri nets. Software Engineering, IEEE Transactions on 17 (3), 259–273.

Berthomieu, B., Peres, F., Vernadat, F., 2006. Bridging the gap between timed automata and bounded time petri nets. En: Asarin, E., Bouyer, P. (Eds.), Formal Modeling and Analysis of Timed Systems. Vol. 4202 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 82–97.

Berthomieu, B., Ribet, P.-O., Vernadat, F., 2004. The tool tina - construction of abstract state spaces for petri nets and time petri nets. International Journal of Production Research 42 (14), 2741–2756.

Boucheneb, H., Hadjidj, R., 2006. Model checking for time petri nets. Theoretical Computer Science 353 (13), 208 – 227.

Cabasino, M., Giua, A., Pocci, M., Seatzu, C., 2011. Discrete event diagnosis using labeled petri nets. an application to manufacturing systems. Control Engineering Practice 19 (9), 989 – 1001.

Cassandras, C. G., Lafortune, S., 2008. Introduction to Discrete Event Systems.

Cassez, F., Tripakis, S., may 2008. Fault diagnosis with dynamic observers. En: Discrete Event Systems, 2008. WODES 2008. 9th International Workshop on. pp. 212 –217.

Correcher, A., 2005. Diagnóstico de fallos intermitentes en procesos industriales basado en modelos de eventos discretos. Ph.D. thesis, Universidad Politécnica de Valencia.

Desel, J., July 2013. On cyclic behaviour of unbounded petri nets. En: Application of Concurrency to System Design (ACSD), 2013 13th International Conference on. pp. 110–119.

Dotoli, M., Fanti, M., Mangini, A., Ukovich, W., may 2008a. On-line identification of petri nets with unobservable transitions. En: Discrete Event Systems, 2008. WODES 2008. 9th International Workshop on. pp. 449 –454.

Dotoli, M., Fanti, M., Mangini, A. M., May 2008b. Real time identification of discrete event systems using petri nets. Vol. 44. Pergamon Press, Inc., Tarrytown, NY, USA, pp. 1209–1219. DOI: 10,1016/ j.automatica,2007,10,014

Estrada-Vargas, A.-P., Lesage, J.-J., Lopez-Mellado, E., Jun 2012. Identification ´ of industrial automation systems: Building compact and expressive petri net models from observable behavior. En: 2012 American Control Conference (ACC’12). Canada, pp. 6095 – 6101.

Fanti, M. P., Mangini, A. M., Ukovich, W., 2012. Fault detection by labeled petri nets in centralized and distributed approaches. Automation Science and Engineering, IEEE Transactions on PP (99), 1.

Gardey, G., Lime, D., Magnin, M., (h. Roux, O., 2005. Romeo: ´ A tool for analyzing time petri nets. En: In Proc. CAV’05, vol. 3576 of LNCS. Springer, pp. 418–423.

Gaubert, S., Giua, A., Dec 1996. Deterministic weak-and-marked petri net languages are regular. Automatic Control, IEEE Transactions on 41 (12), 1802– 1803.

Girault, C., Valk, R., 2003. Petri nets for systems engineering - a guide to modeling, verification, and applications. Springer. DOI: http://www.springer.com/computer/swe/book/978 − 3 − 540 − 41217 − 5

Giua, A., 2013. Supervisory control of petri nets with language specifications. En: Seatzu, C., Silva, M., van Schuppen, J. H. (Eds.), Control of DiscreteEvent Systems. Vol. 433 of Lecture Notes in Control and Information Sciences. Springer London, pp. 235–255.

González-Miranda, O. Cerrada-Lozada, M., 2014. Diagnóstico de sistemas de eventos discretos controlados: Un enfoque basado en crónicas y análisis modular usando modelos de autómatas. Revista Iberoamericana de Automática e Informática Industrial {RIAI} 11 (2), 191 – 201. DOI: http : //dx.doi.org/10,1016/ j.riai,2014,02,003

Guasch, A., Piera, M., Casanovas, J., Figueras, J., 2005. Modelado y simulación. Alfaomega.

Hernández, K., Meda-Campana, M., July 2012. Fault diagnosis using petri nets. a case study. Proceedings of the 10th Latin American and Caribbean Conference for Engineering and Technology.

Holloway, L. E., Guan, X., Sundaravadivelu, R., Ashley, Jr., J., Oct. 2000. Automated synthesis and composition of taskblocks for control of manufacturing systems. Trans. Sys. Man Cyber. Part B 30 (5), 696–712.

Hu, H., Zhou, M. C., Li, Z., Tang, Y., 2012. An optimization approach to improved petri net controller design for automated manufacturing systems. Automation Science and Engineering, IEEE Transactions on PP (99), 1.

Ichikawa, A., Hiraishi, K., 1988. Analysis and control of discrete event systems represented by petri nets. En: Varaiya, P., Kurzhanski, A. (Eds.), Discrete Event Systems: Models and Applications. Vol. 103 of Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg, pp. 115–134.

Kumar, R., Holloway, L., Feb 1996. Supervisory control of deterministic petri nets with regular specification languages. Automatic Control, IEEE Transactions on 41 (2), 245–249.

Lunze, J., 1998. Qualitative modelling of dynamical systems: Motivation, methods, and prospective applications. Mathematics and Computers in Simulation 46 (6), 465 – 483.

Merlin, P., Farber, D. J., Sep 1976. Recoverability of communication protocols -implications of a theoretical study. Communications, IEEE Transactions on 24 (9), 1036–1043.

Muñoz, D. M., Correcher, A., Garc´ıa, E., Morant, F., 2014. Identification of stochastic timed discrete event systems with st-ipn. Mathematical Problems in Engineering 2014 (00), 21. DOI: 10,1155/2014/835312

Murata, T., apr 1989. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77 (4), 541 –580. DOI: 10,1109/5,24143

Nakamura, D., Takeda, Y., Murakoshi, H., Funakubo, N., Dohi, Y., Aug 1998. A modeling language for petri net based factory automation systems. En: Industrial Electronics Society, 1998. IECON ’98. Proceedings of the 24th Annual Conference of the IEEE. Vol. 1. pp. 120–125.

Patil, S., Vyatkin, V., Sorouri, M., 2012. Formal verification of intelligent mechatronic systems with decentralized control logic. En: Emerging Technologies Factory Automation (ETFA), 2012 IEEE 17th Conference on. pp. 1–7.

Peres, F., Berthomieu, B., Vernadat, F., Sep. 2011. On the composition of time petri nets. Discrete Event Dynamic Systems 21 (3), 395–424.

Piera, M., Music, G., 2011. Coloured petri net scheduling models: Timed state space exploration shortages. Mathematics and Computers in Simulation 82 (3), 428 – 441, 6th Vienna International Conference on Mathematical Modelling. DOI: http : //dx.doi.org/10,1016/ j.matcom,2010,10,014

Ramadge, P., Wonham, W., jan 1989. The control of discrete event systems. Vol. 77. pp. 81 –98.

Ramirez-Treviño, A., Ruiz-Beltran, E., Aramburo-Lizarraga, J., LopezMellado, E., march 2012. Structural diagnosability of des and design of reduced petri net diagnosers. Vol. 42. pp. 416 –429. DOI: 10,1109/T S MCA,2011,2169950

Ramirez-Treviño, A., Ruiz-Beltran, E., Rivera-Rangel, I., Lopez-Mellado, E., jan. 2007. Online fault diagnosis of discrete event systems. a petri net-based approach. Vol. 4. pp. 31 –39. DOI: 10,1109/T AS E,2006,872120

Salum, L., 2008. Petri nets and time modelling. The International Journal of Advanced Manufacturing Technology 38 (3-4), 377–382.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D., mar 1996. Failure diagnosis using discrete-event models. Vol. 4. pp. 105 –124.

Silva, M., 1993. Introducing petri nets. En: Practice of Petri Nets in Manufacturing. Springer Netherlands, pp. 1–62. DOI: 10,1007/978 − 94 − 011 − 6955 − 4−1

Silva, M., Recalde, L., 2007. Redes de petri continuas: Expresividad, analisis y ´ control de una clase de sistemas lineales conmutados. Revista Iberoamericana de Automatica ´ e Informatica Industrial ´ 04 (03), 5–33.

Sreenivas, R., Aug 1993. Deterministic lambda-free petri net languages and their application to the supervisory control of discrete event dynamic systems. En: Circuits and Systems, 1993., Proceedings of the 36th Midwest Symposium on. pp. 340–343.

Sreenivas, R., May 2006. On minimal representations of petri net languages. Automatic Control, IEEE Transactions on 51 (5), 799–804.

Sreenivas, R., Krogh, B., 1991. Petri net based models for condition/event systems. En: American Control Conference, 1991. pp. 2899–2904.

Valk, R., Vidal-Naquet, G., 1981. Petri nets and regular languages. Journal of Computer and System Sciences 23 (3), 299 – 325.

Abstract Views

684
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912