Tolerancia al Fallo en Control Directo de Par con Vectores Virtuales de Tensión

P. García Entrambasaguas, I. González-Prieto, M.J. Durán, M. Bermúdez, F. Barrero

Resumen

La fiabilidad es considerada una característica fundamental en algunos accionamientos eléctricos de velocidad variable. Es por ello que los sistemas multifásicos, que presentan una mayor tolerancia al fallo que los sistemas trifásicos convencionales, resultan una alternativa interesante para este tipo de aplicaciones. Esta mayor tolerancia al fallo es debida a su mayor número de grados de libertad, lo que se traduce en un aumento de su fiabilidad. En este artículo se presenta la aplicación de un control directo de par basado en vectores virtuales de tensión para una máquina de inducción de seis fases, considerando un fallo de fase abierta. La introducción de estos vectores virtuales permite reducir las pérdidas en el cobre debido a la reducción de las componentes x-y de corriente propias de los sistemas multifásicos. La implementación de la estrategia de control propuesta va a permitir tanto un incremento de la fiabilidad del accionamiento eléctrico como la disminución de las pérdidas debidas a las citadas componentes x-y. La bondad del método propuesto ha sido validada mediante resultados experimentales.


Palabras clave

Convertidores y accionamientos eléctricos; Motores eléctricos; Ingeniería del control; Tolerancia al fallo

Texto completo:

PDF

Referencias

Alcharea, R., Kianinezhad, R., Nahid, B., Betin, F., Capolino, G.A. 2009. Fault tolerant DTC for six-phase symmetrical induction machine. 35th Annual Conference of IEEE Industrial Electronics (IECON). Oporto, Portugal.

Alcharea, R., Nahidmobarakeh, B., Betin, F., Capolino, G.A. 2008. Direct torque control (DTC) for six-phase symmetrical induction machine under open phase fault. 14th IEEE Mediterranean Electrotechnical Conference (MELECON). Ajaccio, Francia.

Asadzadeh, V., Dastfan, A., Darabi, A. 2017. Post-fault performance enhancement of the PMSM drive by employing the predictive torque control. 8th IEEE Power Electronics, Drive Systems and Technology Conference (PEDSTC). Mashhad, Irán.

Arnanz, R., García, F.J., Miguel, L.J. 2016. Métodos de control de motores de inducción: síntesis de la situación actual. Revista Iberoamericana de Automática e Informática industrial 13, 381-392. https://doi.org/10.1016/j.riai.2015.10.001

Barrero, F., Durán, M.J. 2016. Recent advances in the design modeling, and control of multiphase machines – Part I. IEEE Transactions on Industrial Electronics 63, No. 1, 449-458. https://doi.org/10.1109/TIE.2015.2447733

Belgacem, A., Salem, Y.B., Abdelkrim, M.N. 2015. Modified DTC control using fuzzy logic control for dual three phase induction machine with open phases. 21th International Multi-Conference on Systems, Signals y Devices (SSD). Mahdía, Túnez.

Benatmane, M., McCoy, T. 1998. Development of a 19 MW PWM converter for U.S. Navy surface ships. Proc. Int. Conf. ELECSHIP, Estambul, Turquía.

Bermúdez, M., González-Prieto, I., Barrero, F., Guzmán, H., Kestelyn, X., Durán, M.J. 2017. An experimental assessment of open-phase fault-tolerant virtual vector based direct torque control in five-phase induction motor drives. IEEE Transactions on Power Electronics, https://doi.org/10.1109/TPEL.2017.2711531

Bermúdez, M., González-Prieto, I., Barrero, F., Guzmán, H., Durán, M.J., Kestelyn, X. 2016. Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives. IEEE Transactions on Industrial Electronics 64, No. 2, 902-911. https://doi.org/10.1109/TIE.2016.2610941

Cao, W., Mecrow, B.C., Atkinson, G.J., Bennett, J.W., Atkinson, D.J. 2012. Overview of electric motor technologies used for more electric aircraft (MEA). IEEE Transactions on Industrial Electronics 59, No. 9, 3523-3521. https://doi.org/10.1109/TIE.2011.2165453

Che, H.S., Levi, E., Jones, M., Durán, M.J., Hew, W.P., Rahim, N.A. 2014. Operation of a six-phase induction machine using series-connected machine-side converters. IEEE Transactions on Industrial Electronics 61, No. 1, 164-176. https://doi.org/10.1109/TIE.2013.2248338

Che, H.S., Durán, M., Levi, E., Jones, M. Hew, W.P., Rahim, N.A. 2013. Post-fault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points. IEEE Energy Conversion Congress and Exposition (ECCE). Denver, CO, USA.

Depenbrock, M. 1988. Direct self-control (DSC) of inverter-fed induction machine. IEEE Transactions on Power Electronics 3, No. 4, 420-429. https://doi.org/10.1109/63.17963

Durán, M.J. y Barrero, F. 2016. Recent Advances in the design modeling, and control of multiphase machines – Part II. IEEE Transactions on Industrial Electronics 63, No. 1, 459-468. https://doi.org/10.1109/TIE.2015.2448211

Durán, M.J., Riveros, J.A., Barrero, F., Guzmán, H., Prieto, J. 2012. Reduction of common-mode voltage in five-phase induction motor drives using predictive control techniques. IEEE Transactions on Industrial Applications 48, No. 6, 2059-2067. https://doi.org/10.1109/TIA.2012.2226221

Ferreira, C.L., Bucknall, R.W.G. 2004. Modelling and real-time simulation of an advanced marine full-electrical propulsion system. 2nd International Conference on Power Electronics, Machines and Drives (PEMD). Edimburgo, Reino Unido.

Freire, N.M.A., Marques Cardoso, A.J. 2013. Fault-tolerant converter for AC drives using vector-based hysteresis current control. 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drive (SDEMPED). Valencia, Spain. https://doi.org/10.1109/DEMPED.2013.6645724

Gamesa Technological Corporation S.A., 2016. Gamesa 5.0 MW. Archivo recuperado de: http://www.gamesacorp.com/recursos/doc/productosservicios/aerogeneradores/catalogo-g10x-45mw.pdf.

Gao, L., Fletcher, J.E., Zheng, L. 2011. Low-speed control improvements for a two-level five-phase inverter-fed induction machine using classic direct torque control. IEEE Transactions on Industrial Electronics 58, No. 7, 2744-2754. https://doi.org/10.1109/TIE.2010.2070775

González-Prieto, I., Durán, M. J., Aciego, J.J., Martín, C., Barrero, F. 2017a. Model predictive control of six-phase induction motor drives using virtual voltage vectors. IEEE Transactions on Industrial Electronics 65, No. 1, 27-37. https://doi.org/10.1109/TIE.2017.2714126

González-Prieto, I., Durán, M.J., Ríos-García, N. Barrero, F., Martín, C. 2017b. Open-switch fault detection in five-phase induction motor drives using model predictive control. IEEE Transactions on Industrial Electronics 65, No. 4, 3045-3055. https://doi.org/10.1109/TIE.2017.2748052

González-Prieto, I., Durán, M.J., Barrero, F. 2016. Fault-tolerant control of six-phase induction motor drives with variable current injection. IEEE Transactions on Power Electronics, 32, No. 10, 7894-7903. https://doi.org/10.1109/TPEL.2016.2639070

González-Prieto, I., Durán, M.J., Barrero, F., Bermúdez, M., Guzmán, H. 2016. Impact of post-fault flux adaptation on six-phase induction motor drives with parallel converters. IEEE Transactions on Power Electronics 32, No. 1, 515-528. https://doi.org/10.1109/TPEL.2016.2533719

González-Prieto, I., Durán, M.J., Che, H.S., Levi, E., Bermúdez, M., Barrero, F. 2015. Fault-tolerant operation of six-phase energy conversion systems with parallel machine-side converters. IEEE Transactions on Power Electronics 31, No. 4, 3068-3079. https://doi.org/10.1109/TPEL.2015.2455595

González, I., Durán, M.J., Che, H.S., Levi, E., Aguado, J. 2014. Fault-tolerant efficient control of six-phase induction generators in wind energy conversion systems with series-parallel machine-side converters. 7th IET International Conference on Power Electronics, Machines and Drives (PEMD). Manchester, UK. https://doi.org/10.1049/cp.2014.0482

González, I., Durán, M.J., Che, H.S. Levi, E., Barrero, F. 2013. Fault-tolerant control of six-phase induction generators in wind energy conversion systems with series-parallel machine-side converters. 39th Annual Conference of the IEEE Industrial Electronics Society (IECON). Viena, Austria.

Guzmán, H., Durán, M.J., Barrero, F., Zarri, L., Bogado, B., González-Prieto, I., Arahal, M.R. 2015. Comparative study of predictive and resonant controllers in fault-tolerant five-phase induction motor drives. IEEE Transactions on Industrial Electronics 63, No. 1, 606-617. https://doi.org/10.1109/TIE.2015.2418732

Guzmán, H., Durán, M.J., Barrero, F., Bogado, B., Toral, S. 2013. Speed control of five-phase induction motors with integrated open-phase fault operation using model-based predictive current control techniques. IEEE Transactions on Industrial Electronics 61, No. 9, 4474-4484. https://doi.org/10.1109/TIE.2013.2289882

Guzmán, H., Durán, M.J., Barrero, F. 2012. A comprehensive fault analysis of a five-phase induction motor drive with an open phase. 15th IEEE International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia.

Hodge, C., Williamson, S., Smith, A.C. 2002. Direct drive marine propulsion motors. Proc. Int. Conf. Electrical Machines (ICEM), Brujas, Bélgica.

Jiang, Q., Zhao, W., Tao, T., Ji, J. 2016. New direct torque control of five-phase fault-tolerant flux-switching permanent-magnet motor drives. 21st International Conference on Electrical Machines (ICEM). Lausana, Suiza.

Kianinezhad, R., Alcharea, R., Nahid, B., Betin, F., Capolino G.A. 2008. Analysis and evaluation of DTC and FOC in open phase fault operation of six-phase induction machines. The 14th IEEE Mediterranean Electrotechnical Conference (MELECON). Ajaccio, Francia. https://doi.org/10.1109/MELCON.2008.4618476

Levi, E. 2016. Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines. IEEE Transactions on Industrial Electronics 63, No. 1, 433-448. https://doi.org/10.1109/TIE.2015.2434999

Lu, S., Corzine, K. 2005. Multilevel multi-phase propulsion drives. IEEE Electric Ship Technologies Symposium. Filadelfia, PA, USA.

Lu, H., Li, J., Qu, R., Ye, D., Lu, Y., Zhang, R. 2017. Post-fault model predictive control of asymmetrical six-phase permanent magnet machine with improved mathematical model. IEEE International Electric Machines and Drives Conference (IEMDC). Miami, FL, USA. https://doi.org/10.1109/IEMDC.2017.8002332

Lu, H., Li, J., Qu, R., Xiao, L., Ye, D. 2016. Reduction of unbalanced axial magnetic force in post-fault operation of a novel six-phase double-stator axial flux PM machine using model predictive control. IEEE Energy Conversion Congress and Exposition (ECCE). Milwaukee, WI, USA.

Martín, C., Arahal, M.R., Barrero, F., Durán, M.J. 2016. Five-phase induction motor rotor current observer for finite control set model predictive control of stator current. IEEE Transactions on Industrial Electronics 63, No. 7, 4527-4538. https://doi.org/10.1109/TIE.2016.2536578

McCoy, T., Benatmane, M. 1998. The all-electric warship: An overview of the U.S. Navy's integrated power system development programme. Proc. Int. Conf. ELECSHIP. Estambul, Turquía.

Munim, W.N.W.A., Durán, M.J., Che, H.S., Bermúdez, M., González-Prieto, I., Rahim, N.A. 2016. A Unified analysis of the fault tolerance capability in six-phase induction motor drives. IEEE Transactions on Power Electronics 32, No. 10, 7824-7836. https://doi.org/10.1109/TPEL.2016.2632118

Ríos-García, N., Durán, M.J., González-Prieto, I., Martín, C., Barrero, F. 2017. An open-phase fault detection method for six-phase induction motor drives. International Conference on Renewable Energies and Power Quality. Málaga, Espa-a. https://doi.org/10.24084/repqj15.358

Riveros, J.A. 2016. Pulse width modulation for asymmetrical six-phase machines fed by five-leg converters. 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON). Florencia, Italia.

Riveros, A., Yepes, A.G., Barrero, F., Doval-Gandoy, J., Bogado, B., López, O., Jones, M., Levi, E. 2012. Parameter identification of multiphase induction machines with distributed windings — Part 2: time-domain techniques. IEEE Transactions on Energy Conversion 27, No. 4, 1067- 1077. https://doi.org/10.1109/TEC.2012.2219862

Rolak, M., Malinowski, M. 2015. Post-fault operation of multiphase energy generation system. 9th IEEE International Conference on Compatibility and Power Electronics (CPE). Costa da Caparica, Portugal. https://doi.org/10.1109/CPE.2015.7231089

Simoes, M.G., Vieira, P. 2002. A high-torque low-speed multiphase brushless machine – A perspective application for electric vehicles. IEEE Transactions on Industrial Electronics 49, No. 5, 1154-1164. https://doi.org/10.1109/TIE.2002.803241

Smith, S. 2002. Developments in power electronics, machines and drives. IEEE Power Engineering Journal 16, No. 1, 13-17. https://doi.org/10.1049/pe:20020102

Sudhoff, S.D., Alt, J.T., Hegner, N.J., Robey, H.N. Jr. 1997. Control of a 15-phase induction motor drive system. Proc. Naval Symp. Electr. Mach., Newport, RI, 69-75.

Takahashi, I., Noguchi, T. 1986. A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry Applications IA-22, No. 5, 820-827. https://doi.org/10.1109/TIA.1986.4504799

Tang, Q., Ge, X., Liu, Y.C. 2016. Performance analysis of two different SVM-based field-oriented control schemes for eight-switch three-phase inverter-fed induction motor drives. 8th IEEE International Power Electronics and Motion Control Conference (IPEMC-ECCE). Hefei, China.

Tani, A., Mengoni, M., Zarri, L., Serra, G., Casadei, D. 2011. Control of multiphase induction motors with an odd number of phases under open-circuit phase faults. IEEE Transactions on Power Electronics 27, No. 2, 565-577. https://doi.org/10.1109/TPEL.2011.2140334

Terrien, F., Siala, S., Noy, P. 2004. Multiphase induction motor sensorless control for electric ship propulsion. 2nd IEEE International Conference on Power Electronics, Machines and Drives (PEMD). Edimburgo, Reino Unido.

Wang, X., Wang, Z., Cao, J., Cheng, M., Xu, L. 2016. Fault tolerant operation of T-NPC three-level asymmetric six-phase PMSM drives based on direct torque control. IEEE Vehicle Power and Propulsion Conference (VPPC). Hangzhou, China. https://doi.org/10.1109/VPPC.2016.7791689

Wang, X., Wang, Z., Cheng, M., Hu, Y. 2017. Remedial strategies of T-NPC three-level asymmetric six-phase PMSM drives based on SVM-DTC. IEEE Transactions on Industrial Electronics 64, No. 9, 6841-6853. https://doi.org/10.1109/TIE.2017.2682796

Xu, J., Yuan, Y. Zhang, Z., Guo. H. 2017. The influence analysis of different fault modes on the post-fault performance of fault tolerant permanent magnet synchronous motor. 20th IEEE International Conference on Electrical Machines and Systems (ICEMS). Sydney, NSW, Australia. https://doi.org/10.1109/ICEMS.2017.8056326

Yaramasu, V., Dekka, A., Durán, M.J., Kouro, S., Wu, B. 2017. PMSG-based wind energy conversion systems: survey on power converters and control. IET Electric Power Applications 11, No. 6, 956-968. https://doi.org/10.1049/iet-epa.2016.0799

Zhao, Y., Lipo, T.A. 1995. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Transactions on Industry Applications 31, No. 5, 1100-1109. https://doi.org/10.1109/28.464525

Zheng, L., Fletcher, J.E., Williams, B.W., He, X. 2011. A novel direct torque control scheme for a sensorless five-phase induction motor drive. IEEE Transactions on Industrial Electronics 58, No. 2, 503-513. https://doi.org/10.1109/TIE.2010.2047830

Zhou, Y., Lin, X., Cheng, M. 2015. A fault-tolerant direct torque control for six-phase permanent magnet synchronous motor with arbitrary two opened phases based on modified variables. IEEE Transactions on Energy Conversion 31, No. 2, 549-556. https://doi.org/10.1109/TEC.2015.2504376

Abstract Views

1428
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. FCS-MPC-Based Fault-Tolerant Control of Five-Phase IPMSM for MTPA Operation
Guohai Liu, Chengyan Song, Qian Chen
IEEE Transactions on Power Electronics  vol: 35  num.: 3  primera página: 2882  año: 2020  
doi: 10.1109/TPEL.2019.2931712



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912