Control de Modelos Max Plus Lineales con Restricciones Temporales
DOI:
https://doi.org/10.1016/j.riai.2016.07.001Palabras clave:
Sistemas de Eventos Discretos (SED), Grafos de Eventos Temporizados (GETs), Algebra Max Plus, Restricciones TemporalesResumen
Este artículo trata del control de sistemas de eventos discretos sujetos a sincronización y fenómenos de retraso, descritos por un modelo max plus lineal. Definimos y caracterizamos el conjunto de condiciones iniciales admisibles, las cuales originan soluciones no decrecientes. Restricciones temporales son impuestas al espacio de estado del sistema. Estas restricciones son descritas en el cono max plus definido por la imagen de la estrella de Kleene de la matriz asociada a las restricciones temporales. Propiedades geométricas de este cono max plus, para garantizar que la evolución del sistema en lazo cerrado satisface las restricciones, son estudiadas. Condiciones suficientes concernientes a la existencia y cálculo de una retroalimentación de estado son presentadas. Para ilustrar la aplicación de este enfoque, dos problemas de control son discutidos, para los cuales un controlador es diseñado con el objetivo de garantizar la satisfacción de las restricciones temporales.Descargas
Citas
Allamigeon, X., Gaubert, S., Goubault, E., 2010. “The tropical double descrip- ´ tion method”, in Proc. Symp. Theor. Aspects Comp. Sci., Nancy, France, pp. 47-58.
Allamigeon, X., Gaubert, S., Goubault, E., 2012. Computing the ´ vertices of tropical polyhedra using directed hypergraphs, Discrete Comput. Geom.
Amari, S., Demongodin, I., Loiseau, J. J., Martinez, C., 2012. Max-plus control design for temporal constraints meeting in timed event graphs, IEEE Trans. Automatic Control, Vol. 57, No. 2, pp. 462-467.
Atto A., Martinez C., Amari S., 2011. Control of discrete event systems with respect to strict duration: supervision of an industrial manufacturing plant. Comput Inf Syst 61(4):1149-1159.
Baccelli, F., Cohen, G., Olsder, G.-J., Quadrat, J.-P., 1992. Synchronization and Linearity. John Wiley & Sons, New York.
Cohen, G., Gaubert, S., Quadrat, J. P.,1999. “Max-plus algebra and system theory: where we are and where to go now,”Annu. Rev. Control, vol. 23, pp. 207-219.
Cohen, G., 2001. Analisis ´ y Control de sistemas de eventos discretos: De redes de Petri temporizadas. Argentina: ENPC & INRIA (Francia).
Gaubert, S., Katz, R., 2007. The Minkowski theorem for max-plus convex sets. Linear Algebra and Appl., 421:356-369.
Gaubert, S., Katz, R., 2009. The tropical analogue of polar cones. Linear Algebra and Appl., 431:608-625.
Gaubert, S., Katz, R., 2011. Minimal half-spaces and external representation of tropical polyhedra, Journal of Algebraic Combinatorics 33, no. 3, 325348.
Katz, R. D., 2007. Max-plus (A,B)-invariant spaces and control of timed discrete-event systems, IEEE Trans. Automatic Control, Vol. 52, No. 2, pp. 229-241.
Kim, J. H., Lee, T. E. 2003. Schedule stabilization and robust timing control for time-constrained cluster tools. In IEEE international conference on robotics and automation, pp. 1039-1044. Taipei, Taiwan.
Libeaut, L., Loiseau, J., 1995. Admissible initial conditions and control of timed event graphs, 34th Conference on Decision and Control, New Orleans, Louisianna.
Maia, C., Andrade, C., Hardouin, L., 2011. On the control of max plus linear system subject to state restriction. Automatica 47(5): 988-992.
Murata, T., 1989. Petri nets: Properties, analysis and applications. IEEE, Proc 77(4), 541-580.
Wonham, W. M., Linear Multivariable Control: A Geometric Approach, 3rd ed. New York: Springer-Verlag.
Wu, N., Chu, C., Chu, F., Zhou, M. 2008. A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints, IEEE Trans. Semiconduct. Manuf., vol. 21, pp. 224-237.
Descargas
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)