Control Difuso con Estimador de Estados para Sistemas de Páncreas Artificial

Autores/as

  • Rodrigo González Pontificia Universidad Católica de Chile
  • Aldo Cipriano Pontificia Universidad Católica de Chile

DOI:

https://doi.org/10.1016/j.riai.2016.09.001

Palabras clave:

Control biomédico, Control difuso, Filtros Extendidos de Kalman, Sistemas médicos, Sistemas no lineales

Resumen

Se propone la utilización de un controlador difuso sobre un modelo de estados mínimos con el fin de alcanzar un control de infusión de insulina continuo y eficiente en pacientes con T1DM. El sistema se apoya con un Filtro Extendido de Kalman para suplir las deficiencias de los dispositivos físicos actuales y estimar insulina remanente en el organismo con el fin de predecir su comportamiento futuro. El controlador sintonizado logra una respuesta restringida entre [80, 140] mgdl, con una media de 117, 6 mgdl y desviación estándar de 11, 3 mgdl sobre un conjunto de 365 realizaciones de 24 horas de control con 4 ingestas diarias. Estos resultados muestran que es posible diseñar controladores de baja complejidad que son fácilmente sintonizables por usuarios experimentados o médicos, con un nuevo enfoque de revisión en lazo cerrado. Además, la combinación de técnicas heurísticas con aquellas basadas en modelos permite sintentizar un controlador robusto frente al contexto real de aplicación y, también, administrar en forma eficiente el gasto de insulina. Aún así, la aplicacioón de un sistema completamente automatizado en un ser humano requerirá modelos de mayor dimensión para ajustarse a diferentes situaciones, un controlador de alta robustez y amplia adaptabilidad al organismo de cada paciente y su rutina de ingestas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Fandi, M., Jaradat, M. A., Sardahi, Y., 2012. Optimal pid-fuzzy logic controller for type 1 diabetic patients. En: Mechatronics and its Applications (ISMA), 2012 8th International Symposium on. IEEE, pp. 1–7.

Atlas, E., Nimri, R., Miller, S., Grunberg, E. A., Phillip, M., 2010. Md-logic artificial pancreas system a pilot study in adults with type 1 diabetes. Diabetes Care 33 (5), 1072–1076.

Bergman, R. N., Phillips, L. S., Cobelli, C., 1981. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. Journal of Clinical Investigation 68 (6), 1456.

Bondia, J., Vehí, J., Palerm, C., Herrero, P., 2010. El pancreas artificial: control automático de infusión de insulina en diabetes mellitus tipo 1. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (2), 5–20.

Campos-Delgado, D. U., Hernandez-Ordóñez, M., Femat, R., Gordillo- Moscoso, A., 2006. Fuzzy-based controller for glucose regulation in type1 diabetic patients by subcutaneous route. Biomedical Engineering, IEEE Transactions on 53 (11), 2201–2210.

Elashoff, J., Reedy, T., Meyer, J., 1982. Analysis of gastric emptying data. Gastroenterology;(United States) 83 (6).

Foster-Powell, K., Holt, S. H., Brand-Miller, J. C., 2002. International table of glycemic index and glycemic load values: 2002. The American journal of clinical nutrition 76 (1), 5–56.

Furler, S. M., Kraegen, E. W., Smallwood, R. H., Chisholm, D. J., et al., 1985. Blood glucose control by intermittent loop closure in the basal mode: computer simulation studies with a diabetic model. Diabetes care 8 (6), 553–561.

Ismail, R., Jusoff, K., Ahmad, T., Ahmad, S., Ahmad, R., 2009. Fuzzy state space model of multivariable control systems. Computer and Information Science 2 (2), 19.

ISO 15197, Mar. 2003. In vitro diagnostic test systems – requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. Standard, International Organization for Standardization, Geneva, Switzerland.

Jahn, L. G., Capurro, J. J., Levy, B. L., 2013. Comparative dose accuracy of durable and patch insulin infusion pumps. Journal of diabetes science and technology 7 (4), 1011–1020.

Karvonen, T., December 2014. Stability of linear and non-linear kalman filters. Master’s thesis, University of Helsinki.

Khan, I. U., Ahmad, T., Maan, N., 2013. An inverse feedback fuzzy state space modeling (ffssm) for insulin-glucose regulatory system in humans. Scientific Research and Essays 8 (25), 1570–1583.

Lehmann, E., Deutsch, T., 1992. A physiological model of glucose-insulin interaction in type 1 diabetes mellitus. Journal of biomedical engineering 14 (3), 235–242.

Maleki, A., Geramipour, A., 2011. Continuous control of blood glucose in tidm using fuzzy logic controller in insulin pump: A simulation study. En: Control, Instrumentation and Automation (ICCIA), 2011 2nd International Conference on. IEEE, pp. 122–127.

Man, C., Camilleri, M., Cobelli, C., 2006. A system model of oral glucose absorption: validation on gold standard data. Biomedical Engineering, IEEE Transactions on 53 (12), 2472–2478.

Mythreyi, K., Subramanian, S. C., Kumar, R. K., 2014. Nonlinear glucose– insulin control considering delaysapart ii: Control algorithm. Control Engineering Practice 28, 26–33.

Nimri, R., Phillip, M., 2014. Artificial pancreas: fuzzy logic and control of glycemia. Current Opinion in Endocrinology, Diabetes and Obesity 21 (4), 251– 256.

Russell, S. J., El-Khatib, F. H., Sinha, M., Magyar, K. L., McKeon, K., Goergen, L. G., Balliro, C., Hillard, M. A., Nathan, D. M., Damiano, E. R., 2014. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. New England Journal of Medicine 371 (4), 313–325.

Shapira, G., Yodfat, O., HaCohen, A., Feigin, P., Rubin, R., 2010. Bolus guide: a novel insulin bolus dosing decision support tool based on selection of carbohydrate ranges. Journal of diabetes science and technology 4 (4), 893–902.

Steil, G. M., Rebrin, K., Darwin, C., Hariri, F., Saad, M. F., 2006. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55 (12), 3344–3350.

Sturis, J., Polonsky, K. S., Mosekilde, E., Van Cauter, E., 1991. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. American Journal of Physiology-Endocrinology And Metabolism 260 (5), E801–E809.

Tolic, I. M., Mosekilde, E., Sturis, J., 2000. Modeling the insulin–glucose feed- ´ back system: the significance of pulsatile insulin secretion. Journal of Theoretical Biology 207 (3), 361–375.

Turksoy, K., Quinn, L., Littlejohn, E., Cinar, A., 2014. Multivariable adaptive identification and control for artificial pancreas systems. Biomedical Engineering, IEEE Transactions on 61 (3), 883–891.

Zarkogianni, K., Mougiakakou, S. G., Prountzou, A., Vazeou, A., Bartsocas, C. S., Nikita, K. S., 2007. An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods. En: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE, pp. 5971–5974.

Descargas

Cómo citar

González, R. y Cipriano, A. (2016) «Control Difuso con Estimador de Estados para Sistemas de Páncreas Artificial», Revista Iberoamericana de Automática e Informática industrial, 13(4), pp. 393–402. doi: 10.1016/j.riai.2016.09.001.

Número

Sección

Artículos