Métodos de control de motores de inducción: síntesis de la situación actual

Autores/as

  • Roberto Arnanz CARTIF
  • F. Javier García ITAP
  • Luis J. Miguel Universidad de Valladolid

DOI:

https://doi.org/10.1016/j.riai.2015.10.001

Palabras clave:

Motor de Inducción, Variación de frecuencia, Control Escalar, Control Vectorial, Control Directo de Par

Resumen

Este trabajo describe y analiza la situación actual de los métodos de control de motores de inducción que se aplican en la industria, desde los métodos clásicos hasta los más modernos. Además se da una visión general de las tendencias de control actuales en cada uno de los métodos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahammad, N., Khan, S., Reddy, R., Prasanthi, 2014. Novel dtc-svm for an adjustable speed sensorless induction motor drive. International Journal of Science Engineering and Advance Technology 2, 31 –36.

Alepuz, S., Noviembre 2004. Aportacion al control del convertidor CC ´ /CA de tres niveles. Ph.D. thesis, Universidad Politecnica ´ de Cataluña.

Ambrozic, V., Buja, G. S., Menis, R., Agosto 2004. Band-constrained techinque for direct torque control of induction motor. IEEE Trans. on Industrial Electronics 51 (4), 776–784.

Ameur, A., Mokhtari, B., Essounbouli, N., Mokrani, L., 2012. Speed sensorless direct torque control of a pmsm drive using space vector modulation based mras and stator resistance estimator. World Academy of Science, Engineering and Technology 6, 198 –203.

Blaschke, F., Mayo 1972. The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines. Siemens Review 39 (5), 217–220.

Bose, B. K., 1986. Power Electronics and AC Drives. Prentice-Hall, New Jersey.

Bose, B. K., Patel, N. R., 1998. Quasi-fuzzy estimation of stator resistance of induction motor. IEEE Trans. on Power Electronics 13 (2), 279–287.

Bowes, S. R., Lai, Y., Octubre 1997. The relationship between Space-Vector Modulation and regular sampled PWM. IEEE Trans. on Industrial Electronics 44 (5), 670–679.

Buja, G. S., Kazmierkowski, M. P., Agosto 2004. Direct torque control of PWM inverter-fed AC motors - a survey. IEEE Trans. on Industrial Electronics 51 (4), 744–757.

Carmeli, M., Mauri, M., 2011. Direct torque control as variable structure control: Existence conditions verification and analysis. Electric Power Systems Research. 81, 1188 –1196.

Casadei, D., Grandi, G., Serra, G., Tani, A., Septiembre 1994. Effect of flux and torque hysteresis band amplitude in direct torque control of induction motor.

Casadei, D., Serra, G., Tani, A., Julio 2000. Implementation of a direct torque control algorithm for induction motors based on discrete Space Vector Modulation. IEEE Trans. on Power Electronics 15 (4), 769–777.

Casadei, D., Serra, G., Tani, A., Zarri, L., Profumo, F., Marzo/Abril 2003. Performance analysis of a speed-sensorless induction motor drive based on a constant-switching-frequency DTC scheme. IEEE Trans. on Industry Applications 39 (2), 476–484.

Cortes Cherta, M., 1994. Curso Moderno de M ´ aquinas ´ Electricas Rotati ´ vas. Maquinas ´ de Corriente Alterna As´ıncronas. Vol. III. Editores Tecnicos Asociados, S. A.

Depenbrock, M., Octubre 1988. Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. on Power Electronics 3, 420–429.

Dharmaprakash, R., Henry, J., 2014. Direct torque control of induction motor using three level diode clamped multilevel inverter. International Conference on Computation of Power, Energy, Information and C, 2014., IEEE Annual, 206 – 212.

Escalante, M. F., Vannier, J., Arzande, A., Agosto 2002. Flying capacitor multi- ´ level inverters and DTC motor drive applications. IEEE Trans. on Industrial Electronics 49 (4), 809–815.

Gallegos-Lara, M., Alvares-Salas, R., Moreno, J., Espinosa-Pérez, G., 2010. Control vectorial de un motor de inducción con carga desconocida basado en un nuevo observador no lineal. RIAI - Revista Iberoamericana de Automática e Informática Industrial. 7, 74 –82.

Grabowski, P., Kazmierkowski, M. P., Bose, B. K., Blaabjerg, F., Agosto 2000. A simple direct-torque neuro-fuzzy control of pwm-inverter-fed induction motor drive. IEEE Trans. on Industrial Electronics 47 (4), 863–870.

Guidi, G., Umida, H., 2000. A novel stator resistance estimation method for speed sensorless induction motor drives. IEEE Trans. on Industry Applications 36 (6), 1619–1627.

Ha, I.-J., Lee, S.-H., Agosto 2000. An online identification method for both stator and rotor resistances of induction motors without rotational transducers. IEEE Trans. on Industrial Electronics 47 (4), 842–853.

Habetler, T. G., Profumo, F., Griva, G., Pastorelli, M., Bettini, A., Enero 1998. Stator resistance tuning in a stator flux field oriented drive using an instantaneous hybrid flux estimator. IEEE Trans. on Power Electronics 13 (1), 125– 133.

Habetler, T. G., Profumo, F., Pastorelli, M., Tolbert, L. M., Septiembre/Octubre 1992. Direct torque control of induction machines using space vector modulation. IEEE Trans. on Industry Applications 28 (5), 1045–1053.

Hamed, B., Al-Mobaied, M., 2010. Fuzzy logic speed controllers using fpga technique for three-phase induction motor drives. Dirasat, Engineering Sciences 37, 194 –205.

Hasse, K., 1969. Zur Dynamik Drehzahlgeregelter Antriebe Mit Stromrichtergespeisten Asynchron Kurzshlusslaufer Maschinen.

Holtz, J., Lotzkat, W., Khambadkone, A. M., Octubre 1993. On continuous control of PWM inverters in the overmodulation range including the six-step mode. IEEE Trans. on Power Electronics 8 (4), 546–553.

Holtz, J., Quan, J., Julio/Agosto 2002. Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification. IEEE Trans. on Industry Applications 38 (4), 1087–1095.

Idris, N., Yatim, A. H. M., Enero/Febrero 2002. An improved stator flux estimation in steady state operation for direct torque control of induction machines. IEEE Trans. on Industry Applications 38 (1), 110–116.

Idris, N., Yatim, A. H. M., Agosto 2004. Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans. on Industrial Electronics 51 (4), 758–767.

Kang, J.-W., Chung, D.-W., Sul, S. K., 1999. Direct torque control of induction machine with variable amplitude control of flux and torque hysteresis bands.

Karpe, S., Suryawanshi, R., Markad, S., Octubre 2013. Direct torque control of induction motors. International Journal of Application or Innovation in Engineering and Management 2, 11–16.

Kazmierkowski, M., Krishnan, P. R., Blaabjerg, F., 2002. Control in Power Electronics. Selected Problems. Academic Press.

Kwasinski, A., Krein, P. T., Chapman, P. L., Septiembre 2003. Time domain comparison of Pulse-Width Modulation schemes. IEEE Power Electronics Letters 1 (3), 64–68.

Lai, Y.-S., Lin, J.-C., Wang, J.-J., Noviembre 2000. Direct torque control induction motor drives with self commissioning based on Taguchi methodology. IEEE Trans. on Power Electronics 15 (16), 1065–1071.

Lai, Y.-S., Wang, W.-K., Chen, Y.-C., Agosto 2004. Novel switching techniques for reducing the speed ripple of AC drives with direct torque control. IEEE Trans. on Industrial Electronics 51 (4), 768–775.

Lascu, C., Boldea, I., Blaabjerg, F., Enero/Febrero 2000. A modified direct torque control for induction motor sensorless drive. IEEE Trans. on Industry Applications 36 (1), 122–130.

Lascu, C., Boldea, I., Blaabjerg, F., Marzo/Abril 2004. Direct torque control of sensorless induction motor drives: A sliding-mode approach. IEEE Trans. on Industry Applications 40 (2), 582–590.

Lascu, C., Trzynadlowski, A. M., Enero/Febrero 2004a. Combining the principles of sliding mode, direct torque control, and Space-Vector Modulation in a high-performance sensorless AC drive. IEEE Trans. on Industry Applications 40 (1), 170–177.

Lascu, C., Trzynadlowski, A. M., Octubre 2004b. A sensorless hybrid DTC drive for high-volume low-cost applications. IEEE Trans. on Industrial Electronics 51 (5), 1048–1055.

Lee, D., Lee, G., Noviembre 1998. A novel overmodulation technique for Space-Vector PWM inverters. IEEE Trans. on Power Electronics 13 (6), 1144–1150.

Leonhard, W., 2001. Control of Electrical Drives, 3rd Edition. Springer Verlag, Berlin.

Maes, J., Melkebeek, J. A., Mayo/Junio 2000. Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Trans. on Industry Applications 36 (3), 778–784.

Melfi, M., Hart, R., 1992. Considerations for the use of ac induction motors on variable frequency controllers in high performance applications. Textile, Fiber and Film Industry Technical Conference, 1992., IEEE 1992 Annual 8, 8/1–8/9.

Mendoza, A., 2004. Sistema de control vectorial y diagnostico autom ´ atico ´ de fallos para motores de jaula de ardilla. Ph.D. thesis, Universidad de Valladolid.

Menghal, P., Laxmi, A. J., 2012. State of the art of intelligent control of induction motor drives.

Mitronikas, E. D., Safacas, A., Tatakis, E., Diciembre 2001. A new stator resistance tuning method for stator flux oriented vector controlled induction motor drive. IEEE Trans. on Industrial Electronics 48 (6), 1148–1157.

Monmasson, E., Naassani, A. A., Louis, J., Junio 2001. Extension of the DTC concept. IEEE Trans. on Industrial Electronics 48 (3), 715–717.

Mora, J., Barrero, F., Galvan, E., Colodro, F., Tombs, J., Barranco, M., Torralba, A., Franquelo, L., 2001. Asitron: Asic for indirect vector control of induction motors with fuzzy logic based speed regulation. PCIM, 2001. Conference on Power Electronics, Intelligent Motion and Power Quality, 471–475.

Moustafa, M. A., 2002. Estudio y realización del control directo del par (DTC) para accionamientos de motores de inducción con inversores de diferentes topolog´ıas. Ph.D. thesis, Universidad Politécnica de Cataluña.

Nekoei, F., Kavian, Y., Mahani, A., 2011. Three-phase induction motor drive by fpga. 19th Iranian Conference on Electrical Engineering (ICEE), 1 –6.

Ortega, R., Barabanov, N., Escobar, G., Agosto 2001. Direct torque control of induction motors: Stability analysis and performance improvement. IEEE Trans. on Automatic Control 46 (8), 1209–1222.

Purcell, A., Acarnley, P. P., Mayo 2001. Enhanced inverter switching for fast response direct torque control. IEEE Trans. on Power Electronics 16 (3), 382–389.

Riveros, J., Barrero, F., Levi, E., Duran, M., Jones, M., 2013. Variable-speed five-phase induction motor drive based on predictive torque control. IEEE Transactions on Industrial Electronics. 60, 2957 –2968.

Riveros, J., Prieto, J., Barrero, F., Toral, S., Jones, M., Levi, E., 2010. Multiphase machines in propulsion drives of electric vehicles.

Rodríguez, J., Pontt, J., Kouro, S., Correa, P., Agosto 2004. Direct torque control with imposed switching frequency in an 11-level cascaded inverter. IEEE Trans. on Industrial Electronics 51 (4), 827–833.

Shaw, S. R., Leeb, S. B., Febrero 1999. Identification of induction motor parameters from transient stator current measurements. IEEE Trans. on Industrial Electronics 46 (1), 139–149.

Shyu, K., Shang, L., Chen, H., Jwo, K., Noviembre 2004. Flux compensated direct torque control of induction motor drives for low speed operation. IEEE Trans. on Power Electronics 19 (6), 1608–1613.

Stearns, T., July 2007. Replacing your dc motors?. think ac. urlhttp://http://www.reliableplant.com/Magazine/Issue/Reliable07.

Sun, D., Xue, H., 2014. Speed sensorless control system of induction motor. Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, 2014., IEEE Annual, 100 – 103.

Tai, Z., Li, Y., Ji, Z., 2000. Speed sensorless DTC and parameters estimation of induction motor based on a full order MRAS method.

Takahashi, I., T. Noguchi, 1984. Quick torque response control of an induction motor using a new concept. IEEE J. Tech. Meeting on Rotating Machines, 61–70.

Takahashi, I., T. Noguchi, 1985. A new quick response and high efficiency control strategy of an induction motor. IEEE IAS Anual Meeting, 496–502.

Teixido, M., Sumper, A., Sudriá, A., Sánchez, J., Junio 2003. Convertidores de frecuencia. Automática e Instrumentación (341), 84–103.

Tsuji, M., Chen, S., Izumi, K., Yamada, E., Febrero 2001. A sensorless vector control system for induction motors using q-axis flux with stator resistance identification. IEEE Trans. on Industrial Electronics 48 (1), 185–194.

Vas, P., 1992. Electrical Machines and Drives: A Space-Vector Theory Approach. Oxford University Press, Oxford (New York).

Vas, P., 1993. Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines. Oxford University Press.

Vas, P., 1998. Sensorless Vector and Direct Torque Control. Oxford Science Publications, New York.

Vasic, V., Vukosavic, S., Levi, E., Diciembre 2003. A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives. IEEE Trans. on Energy Conversion 18 (4), 476–483.

Walczyna, A. M., Hill, R. J., 1993. Space vector PWM strategy for 3-level inverter with direct self control.

Yang, G., Chin, T.-H., Julio/Agosto 1993. Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive. IEEE Trans. on Industry Applications 29 (4), 820–825.

Zamora, J. L., Garcia-Cerrada, A., 2000. On line estimation of the stator parameters in an induction motor using only voltage and current measurements. IEEE Trans. on Industry Applications 36 (3), 805–816.

Zhang, Y., Zhu, J., Zhao, Z., Xu, W., Dorrell, D., 2012. An improved direct torque control for three-level inverter-fed induction motor sensorless drive. IEEE Transactions on power electronics 27, 1502–1513.

Zhou, K., Wang, D., Febrero 2002. Relationship between Space-Vector Modulation and three-phase carrier-based PWM: A comprehensive analysis. IEEE Trans. on Industrial Electronics 49 (1), 186–196.

Descargas

Cómo citar

Arnanz, R., García, F. J. y Miguel, L. J. (2016) «Métodos de control de motores de inducción: síntesis de la situación actual», Revista Iberoamericana de Automática e Informática industrial, 13(4), pp. 381–392. doi: 10.1016/j.riai.2015.10.001.

Número

Sección

Tutoriales