Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta

Jair Cervantes, Jesús Taltempa, Farid García Lamont, José S. Ruiz Castilla, Arturo Yee Rendon, Laura D. Jalili

Resumen

El desarrollo de sistemas de identificación de hojas de plantas es un reto actual que comprende numerosas aplicaciones que van desde alimentación, medicina, industria y medio ambiente. En la literatura actual, se han propuesto varias técnicas con el objetivo de identificar plantas en diversos campos de aplicación. Sin embargo, las técnicas actuales están restringidas al reconocimiento e identificación de tipos de plantas limitados, utilizando descriptores de características específicos. En este artículo, se realiza un análisis comparativo de diversos métodos de extracción de características (texturales, cromáticas y geométricas) y clasificacíon sobre conjuntos de plantas muy similares y disimiles entre sí. Doce conjuntos de hojas con características de forma similares son estudiados utilizando varios clasificadores. Se analiza el desempeño de diferentes combinaciones de características en cada conjunto. Los resultados obtenidos muestran que para incrementar el desempeño de los clasificadores estudiados, es necesaria una combinación de las diferentes técnicas de extracción de características, esta necesidad es mayor cuando se trabaja con conjuntos de hojas con características muy similares. Además, se muestra el mejor desempeño de un clasificador con otro.

Palabras clave

Clasificación; Descriptores; SVM; Conjuntos de Datos; Características

Texto completo:

PDF

Referencias

Asraf M.H., Nooritawati M.T., Shah Rizam M.S.B., 2012. A Comparative Study in Kernel-Based Support Vector Machine of Oil Palm Leaves Nutrient Disease, Procedia Engineering, 41, 1353–1359. DOI: 10.1016/j.proeng.2012.07.321

Bernardo J. and Smith A., 1994, Bayesian Theory, Wiley.

Brandstat A., Van Bang L., 2006. Structure and linear time recognition of 3-leaf ¨ powers, Information Processing Letters, 98(4), 133–138. DOI: 10.1016/j.ipl.2006.01.004

Borges J., Bioucas D.J. and Marc¸al A., 2011. Bayesian hyperspectral image segmentation with a discriminative class learning. IEEE Transactions on Geoscience and Remote Sensing; 49(6), 2151–2164. DOI: 10.1109/TGRS.2010.2097268

Cerutti G., Tougne L., Mille J., Vacavant A., Coquin D., 2013. Understanding leaves in natural images, A model-based approach for tree species identifi- cation, Computer Vision and Image Understanding, 117(10), 1482–1501. DOI: 10.1016/j.cviu.2013.07.003

Chaki, J., Parekh, R., 2012. Designing an automated system for plant leaf recognition, International Journal of Advances in Engineering Technology, 2(1), 149–158. DOI: 10.1.1.667.5253

Cope J. S., Corney D., Clark J. Y., Remagnino P., Wilkin P., 2012. Plant species identification using digital morphometrics: A review, Expert Systems with Applications, 39(8), 7562–7573. DOI: 10.1016/j.eswa.2012.01.073

Dempster A., Laird N. and Rubin D., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistics Society, 1(39),1–38. DOI: 10.2307/2984875

Du J.X., Wang X.F., Zhang G.J., 2007. Leaf shape based plant species recognition, Applied Mathematics and Computation, 185 (2), 883–893. DOI: 10.1016/j.amc.2006.07.072

Du J.X., Zhai Ch.M., Wang Q.P., 2013. Recognition of plant leaf image based on fractal dimension features, Neurocomputing, 116, 150–156. DOI: 10.1016/j.neucom.2012.03.028

Flusser, J., Suk, T., 1993. Pattern recognition by affine moment invariants. Pattern Recognition 26(1), 167–174. DOI: 10.1016/0031-3203(93)90098-H

Gonzalez R.C. and Woods R.E., 2010. Digital Image Processing Using MATLAB, Pearson.

Gwo Ch.Y., Wei Ch.H., Li Y., 2013. Rotary matching of edge features for leaf recognition, Computers and Electronics in Agriculture, 91, 124–134. DOI: 10.1016/j.compag.2012.12.005

Haralick R.M., 1979. Statistical and Structural Approaches to Texture. Proc. IEEE, 67, 786–804. DOI: 10.1109/PROC.1979.11328

Haralick R.M., Shanmugam K. and Dinstein I., 1973. Textural Features for Image Classification. IEEE Transactions On System, Man Cybernetics, 6, 610– 621. DOI: 10.1109/TSMC.1973.4309314

He D.C. and Wang L., 1990. Texture Unit, Texture Spectrum, And Texture Analysis, Geoscience and Remote Sensing, IEEE Transactions on, 28, 509– 512. DOI: 10.1109/IGARSS.1989.575836

Hearn D.J., 2009. Shape analysis for the automated identification of plants from images of leaves, Taxon, 58, 934–954.

Hu M.K., 1962. Visual pattern recognition by moment invariants, IRE Trans. Inform. Theory, 8, 179–187 DOI: 10.1109/TIT.1962.1057692

Hu R., Collomosse J., 2013. A performance evaluation of gradient field HOG descriptor for sketch based image retrieval, Computer Vision and Image Understanding, 117(7), 790–806. DOI: 10.1016/j.cviu.2013.02.005

Husin Z., Shakaff A.Y.M., Aziz A.H.A., Farook R.S.M., Jaafar M.N. , Hashim U. , Harun A., 2012. Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm, Computers and Electronics in Agriculture, 89, 18–29. DOI: 10.1016/j.compag.2012.07.009

Intelengine.cn. (2016). intelengine.cn. [online], Intelligent Computing Laboratory, Chinese Academy of Sciences Homepage. Disponible en ¡http://www.intelengine.cn/English/dataset¿.

Jimenez ´ M.E., Sanchez A., Carvajal H., Blanco J., Saenz J.C., 2013. Emisi ´ on´ Acustica ´ y Redes Neuronales para Modelado y Caracterizacion del Proceso ´ de Soldadura por Friccion Agitaci ´ on, ´ Revista Iberoamericana de Automatica ´ e Informatica ´ Industrial RIAI, 10(4), 434–440. DOI: 10.1016/j.riai.2013.09.003

Kadir, A., Nugroho, L. E., Susanto, A., y Santosa, P.I., 2012. Experiments of distance measurements in a foliage plant retrieval system, International Journal of Signal Processing, Image Processing and Pattern Recognition, 5, 256– 263.

Kaur, G., y Kaur, G., 2012. Classification of biological species based on leaf architecture, International Journal of Engineering Research and Development, 1,35–42. DOI: 10.1.1.642.4983

Larese M., Nam´ıas R., Craviotto R., Arango M., Gallo C., Granitto P.M., 2014, Automatic classification of legumes using leaf vein image features, Pattern Recognition, 47(1), 158–168. DOI: 10.1016/j.patcog.2013.06.012

Larese M., Baya A., Craviotto R., Arango M., Gallo C., Granitto P.M., 2014. ´ Multiscale recognition of legume varieties based on leaf venation images, Expert Systems with Applications, Volume 41(10), 4638–4647. DOI: 10.1016/j.eswa.2014.01.029

Liu J., Liu Y., y Yan C., 2008. Feature extraction technique based on the perceptive invariability, Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Shandong, China, 551–554. DOI: 10.1109/fskd.2008.232

Ma W., Manjunath B., 1996. Texture features and learning similarity, in: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 425-430. DOI: 10.1109/cvpr.1996.517107

Manjunath B. y Ma W., 1996. Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842. DOI: 10.1109/34.531803

Yang M., Kpalma K. and Ronsin J., 2008. A Survey of Shape Feature Extraction Techniques, Pattern Recognition Techniques, INTECH Open Access Publisher.

Ng, A.Y.; Jordan, M.I., 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems 14, MIT-Press, 841–848.

Nixon M. y Aguado A., 2002. Feature Extraction and Image Processing, Academic Press.

Novotny P., Suk T., 2013. Leaf recognition of woody species in Central Europe, ´ Biosystems Engineering, 115(4), 444–452. DOI: 10.1016/j.biosystemseng.2013.04.007

Kumar N., Belhumeur P.N., Biswas A., 2012. Leafsnap: a computer vision system for automatic plant species identification, in: Proc. ECCV 2012, 502– 516. DOI: 10.1007/978-3-642-33709-336

Park J.S., Kim T.-Y., 2004. Shape-based image retrieval using invariant features, in: K. Aizawa, Y. Nakamura, S. Satoh, (Eds.), Advances in Multimedia Information Processing-PCM 2004, Berlin/Heidelberg Lecture Notes in Computer Science, pp. 146–153 DOI: 10.1007/978-3-540-30542-219

Portillo E., Cabanes I., Marcos M., Zubizarreta A., 2009. Aplicacion de Redes ´ Neuronales en la Deteccion de Reg ´ ´ımenes Degradados en el Proceso Wedm, Revista Iberoamericana de Automatica ´ e Informatica ´ Industrial RIAI, 6(1), 39–50. DOI: 10.1016/S1697-7912(09)70075-5

Rossomando F.G., Soria C., Carelli R., 2010. Control de Robots Móviles con Incertidumbres Dinamicas usando Redes ´ de Base Radial, Revista Iberoamericana de Automática e Informatica ´ Industrial RIAI, 7(4), 28–35. DOI: 10.1016/S1697-7912(10)70057-1

Rumelhart, D.E.; Hinton, G.E.; Williams, R.J., 1986. Learning representations by back-propagating errors, Nature, 323(6088): 533–536. DOI: 10.1038/323533a0

Russell S. y Norvig P., 2003. [1995]. Artificial Intelligence: A Modern Approach (2nd ed.). Prentice Hall.

Sampallo G., 2003. Reconocimiento de tipos de hojas. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 7(21), 55–62., Asociación Española para la Inteligencia Artificial España.

Smeulders A.W.M., Worring M, Santini S., Gupta A., Jain R., 2000. Contentbased image retrieval at the end of the early years, IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349–1380. DOI: 10.1109/34.895972

Sonka M., Hlavac V., Boyle R., 1993. Image Processing, Analysis and Machine Vision, Springer.

Tico M., Haverinen T., Kuosmanen P., 2000. A method of color histogram creation for image retrieval, in: Proceedings of the Nordic Signal Processing Symposium (NORSIG-2000), Kolmarden, Sweden, 157–160.

Valverde R., Gachet D., 2007. Identificacion de sistemas din ´ amicos ´ utilizando redes neuronales RBF, Revista Iberoamericana de Automatica ´ e Informatica ´ Industrial RIAI, 4(2), 32–42. DOI: 10.1016/S1697-7912(07)70207-8

Vapnik V., 1995. The Nature of Statistical Learning Theory. Springer.

Venters C., Cooper D., 2000. A Review of Content-based Image Retrieval Systems, Technical Report, Manchester Visualization Centre, Manchester Computing, University of Manchester, Manchester, UK.

Wang L. y He D., 1990. Texture Classification Using Texture Spectrum, Pattern Recognition, 23(8), 905–910. DOI: 10.1016/0031-3203(90)90135-8

Werbos P.J., 1994. The Roots of Backpropagation. From Ordered Derivatives to Neural Networks and Political Forecasting. New York, NY: John Wiley Sons, Inc.

Xia Ch., Lee J, Li Y., Song Y., Chung B., Chon T.S., 2013. Plant leaf detection using modified active shape models, Biosystems Engineering, 116(1), 23– 35. DOI: 10.1016/j.biosystemseng.2013.06.003

Du J.X., Wang X.F., Zhang G., 2007. Leaf shape based plant species recognition, Applied Mathematics and Computation, 185(2), 883–893. DOI: 10.1016/j.amc.2006.07.072

Zhang S., Lei Y.K., 2011. Modified locally linear discriminant embedding for plant leaf recognition, Neurocomputing, 74(14), 2284-2290. DOI: 10.1016/j.neucom.2011.03.007

Zhang S., Lei Y., Dong T., Zhang X.P., 2013. Label propagation based supervised locality projection analysis for plant leaf classification, Pattern Recognition, 46(7), 1891–1897. DOI: 10.1016/j.patcog.2013.01.015

Abstract Views

2320
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Multivariate influence through neural networks ensemble: Study of Saharan dust intrusion in the Canary Islands
D. Gonzalez-Calvo, R.M. Aguilar, C. Criado-Hernandez, L.A. Gonzalez-Mendoza
Applied Soft Computing  vol: 107  primera página: 107497  año: 2021  
doi: 10.1016/j.asoc.2021.107497



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912