Modelo Dinámico de un Recuperador de Gases -Sales Fundidas para una Planta Termosolar Híbrida de Energías Renovables

Javier Bonilla, Lidia Roca, Alberto de la Calle, Sebastián Dormido

Resumen

En este artículo se presenta un modelo dinámico para un recuperador de gases - sales fundidas incluido en una planta de demostración de una tecnología de hibridación de plantas termosolares con otras fuentes de energías renovables. Tanto el demostrador como el modelo se han desarrollado en el ámbito del proyecto HYSOL. Este trabajo describe brevemente dicho proyecto, su tecnología, demostrador y principalmente el modelo dinámico del recuperador, cuyo estado estacionario ha sido comparado con los cálculos de diseño. El artículo se completa con simulaciones dinámicas donde se estudia la convergencia del modelo, la contribución de los distintos procesos físicos a la transferencia de calor y el impacto de las condiciones ambientales a las pérdidas térmicas.

Palabras clave

Almacenamiento térmico; Energía solar de concentración; Turbina de vapor; Turbina de gas; Modelica

Texto completo:

PDF

Referencias

ACS/Cobra T&I channel, 2015. Proyecto HYSOL. URL: https://www.youtube.com/watch?v=i69s5zWkVzM

Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., Sep. 2012. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Solar Energy 86 (9), 2293–2305.

Bohtz, C., Gokarn, S., Conte, E., 2013. Integrated Solar Combined Cycles (ISCC) to Meet Renewable Targets and Reduce CO2 Emissions. In: PowerGen Europe. Vienna, Austria, p. 20.

Bonilla, J., de la Calle, A., Rodríguez-García, M.-M., Roca, L., Valenzuela, L., 2015a. Experimental Calibration of Heat Transfer and Thermal Losses in a Shell-and-Tube Heat Exchanger. In: Proc. 11th International Modelica Conference. Versailles, France, pp. 873–882.

Bonilla, J., Roca, L., Cerrajero, E., Mirabal, S., Padilla, S., Rocha, A. R., 2016. Operation and Training Tool for a Gas - Molten Salt Heat Recovery Demonstrator Facility. Procedia Computer Science 00.

Bonilla, J., Rodríguez-García, M.-M., Roca, L., Valenzuela, L., 2015b. ObjectOriented Modeling of a Multi-Pass Shell-and-Tube Heat Exchanger and its Application to Performance Evaluation. In: 1st Conference on Modelling, Identification and Control of Nonlinear Systems (MICNON). SaintPetersburg, Russia, pp. 107–112.

Casella, F., Otter, M., Proelss, K., Richter, C., Tummescheit, H., 2006. The Modelica Fluid and Media library for modeling of incompressible and compressible thermo-fluid pipe networks. In: Proc. 5th International Modelica Conference. Vienna, Austria, pp. 631–640.

Çengel, Y. A., 2006. Heat Transfer: A Practical Approach (3rd edition). McGraw-Hill series in mechanical engineering. McGraw-Hill.

Consorcio Proyecto HYSOL, 2013. Proyecto HYSOL Website. URL: http://www.hysolproject.eu

Dassault Systemes, 2015. Dymola 2016 FD01 - Multi-Engineering Modeling and Simulation. URL: http://www.dymola.com

Dittus, F. W., Boelter, L. M. K., 1930. Heat transfer in automobile radiators of the tubular type. University of California Publications in Engineering 2 (1), 443–461.

Ferri, R., Cammi, A., Mazzei, D., Dec. 2008. Molten salt mixture properties in RELAP5 code for thermodynamic solar applications. International Journal of Thermal Sciences 47 (12), 1676–1687.

Ganapathy, V., 2003. Industrial boilers and heat recovery steam generators : design, applications, and calculations. Marcel Dekker, New York.

Gnielinski, V., 1976. New equations for heat and mass transfer in turbulent pipe flow and channel flow. International Chemical Engineering 2 (16), 359–368.

Haaland, S., 1983. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow. Journal of Fluids Engineering 105 (1), 89–90.

Idelchik, I. E., 2006. Handbook of hydraulic resistance (3rd edition).

Kawaguchi, K., Okui, K., Kashi, T., 2005. Heat Transfer and Pressure Drop Characteristics of Finned Tube Banks in Forced Convection (Comparison of Heat Transfer and Pressure Drop Characteristics of Serrated and Spiral Fins). Journal of Enhanced Heat Transfer 12 (1), 1–20.

Mcbride, B. J., Zehe, M. J., Gordon, S., 2002. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species (September), 297.

Miller, D. S., 1984. Internal Flow Systems (2nd edition). BHRA Fluid Engineering series. BHRA, Fluid Engineering Centre.

Modak, A. T., 1978. Radiation from Products of Combustion. Fire Research 1, 339–361.

Modelica Association, 2012. Modelica - A Unified Object-Oriented Language for Systems Modeling - Language Specification 3.3. https://www.modelica.org/libraries/Modelica. URL: http://www.modelica.org/documents

Moody, L. F., 1944. Friction factors for pipe flow. Transactions of the ASME 66, 671–684.

National Renewable Energy Laboratory, U. D. o. E., 2009. Solar Advisor Model. Tech. rep. URL: https://www.nrel.gov/analysis/sam/pdfs/ sam csp refe rence manual 3.0.pdf

Nir, A., 1991. Heat Transfer and Friction Factor Correlations for Crossflow over Staggered Finned Tube Banks. Heat Transfer Engineering 12 (1), 43–58.

Patankar, S. V., 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington,D.C.

Petukhov, B. S., 1970. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties. Advances in Heat Transfer 6 (C), 504–564.

Petzold, L. R., 1983. A description of DASSL: a Diferential/Algebraic System Solver. Scientific Computing, 65–68.

Rhie, C. M., Chow, W. L., Nov. 1983. Numerical study of the turbulent flow past an airfoil with trailing edge separation. The American Institute of Aeronautics and Astronautics Journal 21, 1525–1532.

Richter, C., 2008. Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems. Ph.D. thesis, Technische Universitat¨ Carolo-Wilhelmina zu Braunschweig, Germany.

Roca, L., Bonilla, J., Rodr´ıguez-Garc´ıa, M.-M., Palenzuela, P., de la Calle, A., Valenzuela, L., 2015. Control strategies in a thermal oil - molten salt heat exchanger. In: 21st SolarPACES Conference.

Servert, J., Cerrajero, E., Lopez, ´ D., Yague, ¨ S., Gutierrez, F., Lasheras, M., Miguel, G. S., 2015. Base Case Analysis of a HYSOL Power Plant. In: Energy Procedia. Vol. 69. Beijing, China, pp. 1152–1159. DOI: 10.1016/j.egypro.2015.03.187

Thermoflow Inc., 2015. ThermoFlex - Fully-flexible design and simulation of combined cycles, cogeneration systems, and other thermal power systems. URL: http://www.thermoflow.com

Weierman, C., 1976. Correlations Ease the Selection of Finned Tubes. The Oil and Gas Journal 74 (36), 94–100.

Wetter, M., 2013. Modelica Buildings Library - A free open-source library for building energy and control systems. URL: http://simulationresearch.lbl.gov/modelica

Zaversky, F., Garc´ıa-Barberena, J., Sanchez, M., Astrain, D., Jul. 2013. ´ Transient molten salt two-tank thermal storage modeling for CSP performance simulations. Solar Energy 93, 294–311.

Zavoico, A. B., 2001. Solar Power Tower - Design Basis Document. Tech. Rep. July, Sandia National Laboratories, Albuquerque, USA.

Abstract Views

1255
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. New low-cost solar tracking system based on open source hardware for educational purposes
Jose A. Carballo, Javier Bonilla, Lidia Roca, Manuel Berenguel
Solar Energy  vol: 174  primera página: 826  año: 2018  
doi: 10.1016/j.solener.2018.09.064



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912