Una Revisión de Técnicas de Optimización Heurística para el Diseño de Trayectorias Interplanetarias en Misiones Espaciales

F. Alonso Zotes, M. Santos Peñas

Resumen

En este trabajo se presenta la optimización heurística como una metodología que permite automatizar el diseño de las rutas interplanetarias con asistencias gravitacionales para conseguir una mayor rentabilidad, en términos científicos, de las exploraciones espaciales. Se trata de un problema de optimización multiobjetivo donde se busca un compromiso entre la minimización de la masa destinada a combustible y la maximización de la carga útil y científica de la misión aeroespacial. Las técnicas de optimización evolutiva han sido aplicadas con éxito a estos problemas de diseño de trayectorias complejas. Se incluye una revisión de algunas de las principales técnicas de optimización heurística que se han utilizado en el ámbito aeroespacial: GA (Genetic Algorithms), PSO (Particle Swarm Optimization) y MOPSO (Multiobjective particle swarm optimization), en concreto para el diseño de misiones de exploración interplanetaria con asistencias gravitacionales, realizadas por numerosos autores. Finalmente se presenta a modo de ejemplo una aplicación concreta de optimización multiobjetivo mediante MOPSO para determinar una trayectoria interplanetaria desde la Tierra con asistencias al cinturón de Kuiper.

Palabras clave

Optimización heurística; trayectorias interplanetarias; asistencias gravitacionales; aplicaciones aeroespaciales; GA; PSO; MOPSO

Texto completo:

PDF

Referencias

F. Alonso, M. Santos, 2008. GA Optimization of the height of a low earth orbit En: Computational Intelligence in Decision and Control, World Scientific (2008), pp.719-724

F. Alonso, M. Santos, 2010a. Multi-criteria Genetic Optimisation of the Manoeuvres of a Two-Stage Launcher Information Sciences, 180 (6) (2010 a), pp. 896- 910, 10.1016/j.ins.2009.11.001

F. Alonso, M. Santos. 2010b. Delta-V genetic optimisation of a trajectory from Earth to Saturn with fly-by in Mars En: Evolutionary Computation (CEC), 2010, IEEE Congress on (2010 b), pp. 1-6

F. Alonso, M. Santos. 2010c. Genetic Optimization of an Interplanetary Trajectory from Earth to Jupiter D. Ruan, T. Li, Y. Xu (Eds.), En: Computational Intelligence Foundations and Applications: Proc. 9th Int. FLINS Conf, 4, World Scientific, Chengdu, China (2010 c) 2-4 August 2010

F. Alonso-Zotes, M. Santos-Peñas From Earth to Kuiper belt: swarm optimisation algorithm applied to interplanetary missions En: Proceedings of the WPP-308, 4th International Conference on Astrodynamics Tools and Techniques ICATT, Madrid, Spain (2010 d), pp. 3-6

F. Alonso Zotes, M. Santos Peñas Particle swarm optimisation of interplanetary trajectories from Earth to Jupiter and Saturn Engineering Applications of Artificial Intelligence, 25 (1) (2012), pp. 189-199, 10.1016/j.engappai.2011.09.005

R. Armellin, P. Di Lizia, K. Makino, M. Berz Rigorous global optimization of impulsive planet-to-planet transfers in the patched-conics approximation Engineering Optimization, 44 (2) (2012), pp. 133-155, 10.1080/0305215X. 2011.570757

R.R. Bate, D.D. Mueller, J.E. WhiteFundamentals Astrodynamics Dover Publications, New York, NY (1971)

S. Campagnola, B.B. Buffington, A.E. Petropoulos. Jovian tour design for orbiter and lander missions to Europa Acta Astronautica, 100 (2014), pp. 68-81, 10.1016/j.actaastro.2014.02.005

E.Y. Choueiri. New Dawn for Electric Rockets. Scientific American, 300 (2009), pp. 58-65, 10.1038/scientificamerican0209-58

B. Dachwald. Optimization of very-low-thrust trajectories using evolutionary neurocontrol. Acta Astronautica, 57 (2) (2005), pp. 175-185, 10.1016/j.actaastro.2005.03.004

S. Das, P.N. Suganthan. Differential evolution: a survey of the stateof-the-art. Evolutionary Computation, IEEE Transactions on, 15 (1) (2011), pp. 4-31, 10.1109/TEVC. 2010.2059031

K. Deb. Multi-objective optimization. In Search methodologies, Springer US (2014), pp. 403-449

R.C. Eberhart, Y. Shi. Comparison between genetic algorithms and particle swarm optimization. En: Evolutionary Programming VII, Springer Berlin Heidelberg (1998), pp. 611-616

ESA, 2014. Rosetta. http://sci.esa.int/rosetta

ESA, 2016. BepiColombo. http://sci.esa.int/bepicolombo

C.M. Fonseca, P.J. Fleming. Multiobjective optimization and multiple constraints handling with evolutionary algorithms-part I: A unified formulation. Systems, Man and Cybernetics, Part A, IEEE Transactions on, 28 (1) (1998), pp. 26-37, 10.1109/3468.650319

D.E. Goldberg. Genetic algorithms in search, optimizacion and machine learning. Adisson-Wesley, MA (1989)

P.G. Hill, C.R. Peterson. Mechanics and thermodynamics of propulsión. (2nd edition), Addison-Wesley Publishing Co, Reading, MA (1992)

X. Hu, R.C. Eberhart. Multiobjective Optimization using Dynamic Neighborhood Particle Swarm Optimization. En: WCCI, Congress on Evolutionary Computation, IEEE (2002), pp. 1677-1681

D. Izzo. Lambert's problem for exponential sinusoids. Journal of guidance, control, and dynamics, 29 (5) (2006), pp. 1242-1245, 10.2514/1.21796

D. Izzo, V.M. Becerra, D.R. Myatt, S.J. Nasuto, J.M. Bishop. Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. Journal of Global Optimization, 38 (2) (2007), pp. 283-296, 10.1007/s10898-006-9106-0

D. Izzo, L.F. Simões, M. Märtens, G.C. de Croon, A. Heritier, C.H. Yam. Search for a grand tour of the Jupiter Galilean moons. In Proc. 15th Annual Conference on Genetic and Evolutionary Computation, ACM (2013), pp. 1301-1308

D. Izzo. Global optimization and space pruning for spacecraft trajectory design. B.A. Conway (Ed.), Spacecraft Trajectory Optimization, 1, Cambridge University Press, Cambridge (2010), pp. 178-200

JAXA, 2016. Japan Aerospace Exploration Agency. http://global.jaxa.jp/projects/sat/ikaros/

Johnson, L., Young, R., Alhorn, D., Heaton, A., Vansant, T., Campbell, B., Pappa, R., Keats, W., Liewer, P.C., Alexander, D., Ayon, J., Wawrzyniak, G., Burton, R., Carroll, D., Matloff, G., Kezerashvili, R.Y., 2010. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics. arXiv: 1012.5250.

J. Kennedy, R.C. Eberhart. Swarm Intelligence. Academic Press, San Diego (2001)

K.W. Kloster, A.E. Petropoulos, J.M. Longuski. Europa Orbiter tour design with Io gravity assists. Acta Astronautica, 68 (7) (2011), pp. 931-946, 10.1016/j.actaastro.2010.08.041

X. Li. Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function. En: Genetic and Evolutionary Computation–GECCO 2004, Springer Berlin Heidelberg(2004), pp. 117-128

A.E. Lynam. Broad-search algorithms for the spacecraft trajectory design of Callisto–Ganymede–Io triple flyby sequences from 2024 to 2040. Part I: Heuristic pruning of the search space. Acta Astronautica, 94 (1) (2014), pp. 246-252

A.E. Lynam. Broad-search algorithms for the spacecraft trajectory design of Callisto–Ganymede–Io triple flyby sequences from 2024 to 2040. Part II: Lambert pathfinding and trajectory solutions. Acta Astronautica, 94 (1) (2014), pp. 253-261, 10.1016/j.actaastro.2013.07.018

A.E. Lynam. Broad-search algorithms for finding triple-and quadruple-satellite-aided captures at Jupiter from 2020 to 2080. Celestial Mechanics and Dynamical Astronomy, 121 (4) (2015), pp. 347-363, 10.1016/j.actaastro.2013.07.020

M. Macdonald (Ed.), Advances in Solar Sailing., Springer Praxis, Chichester (2014)

F.J. Marín Martín, F. García Lagos, F. Sandoval Hernández. Algoritmos Genéticos: una estrategia para la búsqueda y la optimización. Informática y Automática, 25 (3) (1992), pp. 5-15

K. Makino. Rigorous analysis of nonlinear motion in particle accelerators. Doctoral dissertation, Michigan State University, East Lansing, Michigan, USA (1998)

T.T. McConaghy, T.J. Debban, A.E. Petropoulos, J.M. Longuski. Design and optimization of low-thrust trajectories with gravity assists. Journal of spacecraft and rockets, 40 (3) (2003), pp. 380-387, 10.2514/2.3973

M. Minovitch. A method for determining interplanetary free-fall reconnaissance trajectories. Jet Propulsion Laboratory Technical Memo TM-312-130 (1961), pp. 38-44

NASA, 1998. Deep Space 1. National Aeronautics and Space Administration. http://science.nasa.gov/missions/deep-space-1/

A. Ohndorf, B. Dachwald. InTrance -A Tool for Multi-Objective Multi-Phase Low-Thrust Trajectory Optimization. Proceedings of the WPP-308. 4th International Conference on Astrodynamics Tools and Techniques ICATT, Madrid, Spain (2010)

P.D. Pascale, M.Vasile. Preliminary design of low-thrust multiple gravity-assist trajectories. Journal of Spacecraft and Rockets, 43 (5) (2006), pp. 1065-1076, 10.2514/1.19646

S.M. Pessina, S. Campagnola, M. Vasile. Preliminary analysis of interplanetary trajectories with aerogravity and gravity assist manoeuvres. In Proceedings of 54th International Astronautical Congress, Bremen, Germany (2003), pp. 1-11

A.E. Petropoulos, J.M. Longuski. Shape-Based algorithm for automated design of low-thrust, gravity-assist trajectories, Journal of Spacecraft and Rockets. 41 (5) (2004), pp. 787-796, 10.2514/1.13095

M. Reyes-Sierra, C.A. Coello. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research (2006), pp. 287-308 doi=10.1.1.138.1829

S. Schneider, T. Hawkins, M. Rosander, G. Vaghjiani, S. Chambreau, G.Drake. Ionic Liquids as Hypergolic Fuels. Energy Fuels, 22 (4) (2008), pp. 2871-2872, 10.1021/ef800286b

O. Schütze, M. Vasile, O. Junge, M. Dellnitz, D. Izzo. Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach. Engineering Optimization, 41 (2) (2009), pp. 155-181, 10.1080/03052150802391734

E.M. Standish, J.C. Williams. Orbital ephemerides of the sun, moon and planets (PDF). Int Astron Union Comm (2010), p. 4

M. Vasile, E. Minisci, M. Locatelli. Analysis of some global optimization algorithms for space trajectory design. Journal of Spacecraft and Rockets, 47 (2) (2010), pp. 334-344, 10.2514/1.45742

M. Vasile, P.D. Pascale. Preliminary design of multiple gravity-assist trajectories. Journal of Spacecraft and Rockets, 43 (4) (2006), pp. 794-805, 10.2514/1.17413

M. Vasile, L. Summerer, P.D. Pascale. Design of Earth-Mars transfer trajectories using evolutionary-branching technique. Acta Astronautica, 56 (2005), pp. 705-720, 10.1016/j.actaastro.2004.12.002

T. Vinko, D. Izzo. Global optimisation heuristics and test problems for preliminary spacecraft trajectory design. Technical report, European Space Agency, the Advanced Concepts Team (2008)

S. Wang, H. Shang, W. Wu. Interplanetary transfers employing invariant manifolds and gravity assist between periodic orbits. Science China Technological Sciences, 56 (3) (2013), pp. 786-794, 10.1007/s11431-013-5133-5

N. Wallace, P. Jameson, C. Saunders, M. Fehringer, C. Edwards, R.Floberghagen. The GOCE Ion Propulsion Assembly – Lessons Learnt from the First 22 Months of Flight Operations. En: Proc of the 32nd International Electric Propulsion Conf, Wiesbaden (Germany) (2011), pp. 1-21

D. Whitley, S. Dominic, R. Das, C.W. Anderson. Genetic reinforcement learning for neurocontrol problems. Springer US (1994), pp. 103-128, 10.1007/978-1-4615-2740-4_5

K. Zhu, R. Zhang, D. Xu, J. Wang, S. Li. Venus round trip using solar sail. Science China Physics, Mechanics and Astronomy, 55 (8) (2012), pp. 1485-1499, 10.1007/s11433-012-4792-8

E. Zitzler, L. Thiele, K. Deb. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8 (2) (2000), pp. 173-195, 10.1162/106365600568202

Abstract Views

1035
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912