Heurísticas para el Ajuste de Algoritmos de Control de Plataformas Robóticas de Movimiento en Simuladores

Sergio Casas, Cristina Portalés, José V. Riera, Marcos Fernández

Resumen

Diversos tipos de plataformas robóticas son empleadas habitualmente para la generación de claves gravito-inerciales en simuladores. Además del control de los actuadores, dichas plataformas deben ejecutar complejos algoritmos de control conocidos como algoritmos de washout, que deben ser ajustados para que el movimiento generado sea similar al simulado. El ajuste de dichos algoritmos es complejo por el elevado número de parámetros que poseen. Además, dicho ajuste se ha venido realizando tradicionalmente de modo manual mediante evaluaciones subjetivas. En este trabajo, los autores proponen un método automático de ajuste basado en optimización heurística, métricas objetivas, y simulación de la plataforma robótica para conseguir realizar el ajuste de manera más rápida. Se valida la corrección de las soluciones, y se comparan diversas técnicas de optimización, para concluir que la técnica más apropiada es la de los algoritmos genéticos.


Palabras clave

Plataformas de movimiento; heurísticas; simuladores; algoritmos de control; ajuste de parámetros; robótica; optimización

Texto completo:

PDF

Referencias

Alba, E., Blum, C., Asasi, P., Leon, C., Gomez, J. A., 2009. Optimization techniques for solving complex problems. New Jersey, NJ, USA, Wiley.

Bertsimas, D., Tsitsiklis, J., 1993. Simulated Annealing. Statistical Science 9 (1), 10–15.

Casas, S., Alcaraz, J. M., Olanda, R., Coma, I., Fernández, M., 2014. Towards an extensible simulator of real motion platforms. Simulation Modelling Practice and Theory 45 (0), 50–61.

Casas, S., Coma, I., Riera, J. V., Fernández, M., 2015. Motion-Cuing Algorithms: Characterization of Users’ Perception. Human Factors: The Journal of the Human Factors and Ergonomics Society 57 (1), 144–162.

Casas, S., Olanda, R., Fernandez, M., Riera, J. V., 2012. A faster than real-time simulator of motion platforms. CMMSE, Murcia, Spain.

Casas, S., Rueda, S., Riera, J. V., Fernández, M., 2012. On the Real-time Physics Simulation of a Speed-boat Motion. GRAPP/IVAPP.

Colombet, F., Dagdelen, M., Reymond, G., Pere, C., Merienne, F., Kemeny, A., 2008. Motion Cueing: what's the impact on the driver's behaviour? Driving Simulator Conference, Monte-Carlo, Monaco.

Cossalter, V., Lot, R., Massaro, M., Sartori, R., 2011. Development and Validation of an Advanced Motorcycle Riding Simulator. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 225 (6), 705–720.

Díaz, A., Glover, F., Ghaziri, H. M., González, J. L., Laguna, M., Moscato, P., Tseng, F. T., 1996. Optimización Heurística y Redes Neuronales. Madrid, Paraninfo.

Edelkamp, S., Schroedl, S., 2011. Heuristic Search: Theory and Applications. Waltham, MA, USA, Morgan Kaufman - Elsevier.

Ferri, F. J., Albert, J. V., Martín, G., 1998. Introducció a l'Anàlisi i Disseny d'Algorismes. Valencia, Spain, Publicacions de la Universitat de València.

Garrett, N. J. I., Best, M. C., 2010. Driving simulator motion cueing algorithms – a survey of the state of the art. Proceedings of the 10th International Symposium on Advanced Vehicle Control (AVEC), Loughborough, UK.

Go, T. H., Bürki-Cohen, J., Chung, W. H., Schroeder, J. A., Saillant, G., Jacobs, S., Longridge, T., 2003. The Effects of Enhanced Hexapod Motion on Airline Pilot Recurring Training and Evaluation AIAA Modeling and Simulation Technologies Conference and Exhibit, Austin, TX, USA.

Grant, P. R., 1996. The Development of a Tuning Paradigm for Flight Simulator Motion Drive Algorithms. PhD, University of Toronto.

Grant, P. R., Reid, L. D., 1997. Motion Washout Filter Tuning: Rules and Requirements. Journal of Aircraft 34 (2), 145–151.

Gutridge, J., 2004. Three Degree-of-Freedom Simulator Motion Cueing Using Classical Washout Filters and Acceleration Feedback. Master Thesis, Virginia Polytechnic Institute & State University.

Hammersley, J. M., Handscomb, D. C., 1964. Monte Carlo Methods. London, UK & New York, NY, USA.

Holland, J. H., 1992. Genetic Algorithms. Scientific American 267, 66–72.

Kelley, D., 1995. Automata and Formal Languages: An Introduction. New Jersey, NJ, USA, Prentice Hall.

Korobeynikov, A. V., Turlapov, V. E., 2005. Modeling and Evaluating of the Stewart Platform. International Conference Graphicon.

MacNeilage, P. R., Banks, M. S., Berger, D. R., Bulthoff, H. H., 2007. A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Experimental Brain Research, 179 (2), 263-290.

Merlet, J. P., 2006. Parallel robots. The Netherlands, Springer.

Nahon, M. A., Reid, L. D., 1990. Simulator motion-drive algorithms - A designer's perspective. Journal of Guidance, Control, and Dynamics 13 (2), 356–362.

Reid, L. D., Nahon, M. A., 1985. Flight Simulation Motion-Base Drive Algorithms: Part 1 - Developing and Testing the Equations. University of Toronto, UTIAS. 296.

Reid, L. D., Nahon, M. A., 1986. Flight Simulation Motion-Base Drive Algorithms: Part 2- Selecting the System Parameters. University of Toronto, UTIAS. 307.

Reid, L. D., Nahon, M. A., 1986. Flight Simulation Motion-Base Drive Algorithms: Part 3 - Pilot Evaluations. University of Toronto, UTIAS.

Reymond, G., Kemeny, A., 2000. Motion Cueing in the Renault Driving Simulator. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility 34, 249–259

Schmidt, S. F., Conrad, B., 1969. The Calculation of Motion Drive Signals for Piloted Flight Simulators. Palo Alto, CA, USA, NASA. 69–17.

Sinacori, J. B., 1977. The Determination of Some Requirements for a Helicopter Flight Research Simulation Facility. CA, USA, Moffet Field. 7805.

Slob, J. J., 2008. State-of-the-Art Driving Simulators, a Literature Survey. Eindhoven, The Netherlands, Eindhoven University of Technology. Stewart, D., 1965. A Platform with six degrees of freedom.

Stahl, K., Abdulsamad, G., Leimbach, K., Vershinin, Y. A., 2014. State of the Art and Simulation of Motion Cueing Algorithms for a Six Degree of Freedom Driving Simulator. Paper presented at the 17th International Conference on Intelligent Transportation Systems (ITSC).

Abstract Views

877
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Simulation of parallel mechanisms for motion cueing generation in vehicle simulators using AM-FM bi-modulated signals
Sergio Casas, Cristina Portalés, Jesús Gimeno, Marcos Fernández
Mechatronics  vol: 53  primera página: 251  año: 2018  
doi: 10.1016/j.mechatronics.2018.06.008



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912