Sistema de detección de señales de tráfico para la localización de intersecciones viales y frenado anticipado
DOI:
https://doi.org/10.1016/j.riai.2016.09.010Palabras clave:
Intersección vial, accidentes, señales de tráfico, plantillas estadísticas, distancia, color, ChileResumen
En este trabajo se presenta un sistema de detección de señales de tráfico aledañas a intersecciones viales y rotondas, y un análisis para conocer su capacidad de detección en función de la distancia. El método propuesto está basado en la segmentación por color sobre el espacio RGB-normalizado (ErEgEb) para la generación de regiones de interés (ROIs), la clasificación del tipo de señal usando los espacios YCbCr y ErEgEb para construir una plantilla estadística, donde para eliminar el fondo se ha propuesto una función de distribución de probabilidad que modeliza el color de los objetos de interés. El sistema está especializado en dos tipos de señales: disco Pare y triángulo invertido de Ceda el Paso. Luego se analiza su desempeño, al compararlo con el método de Viola & Jones, donde se verifica la capacidad de detección a diferentes distancias. Para distancias menores a 48 metros, el método propuesto ha logrado una tasa de detección del 87.5% en el caso de la señal de Ceda el Paso, y del 95.4% en el caso del disco Pare, mientras que para distancias inferiores a 30 metros la detección lograda es del 100%. Estos resultados son superiores a los reportados en la mayoría de la literatura existente, la cual a diferencia del presente trabajo no aborda la sensibilidad de los métodos propuestos ante la variación de la distancia a las señales de tráfico aún cuando esto es uno de los principales desafíos en la implementación de sistemas de asistencia al conductor aplicables al mundo real. Los experimentos han sido desarrollados sobre una base de datos de señales de tráfico, generadas a partir de imágenes tomadas en varias calles de la ciudad de Santiago, Región Metropolitana, Chile, usando un vehículo experimental diseñado para desarrollar sistemas inteligentes.Descargas
Citas
Abramowitz, M., Stegun, I. A., 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1st Edition. New York: Dover.
Agencia Nacional de Tránsito del Ecuador, 2015. Siniestros octubre 2015. URL
Baya, H., Essa, A., Tuytelaarsb, T., Van Goola, L., June 2008. Speeded-Up Robust Features (SURF) 110 (3), 346âA ¸ ˘ S359.
Carrasco, J., 2009. Advanced driver assistance system based on computer vision using detection, recognition and tracking of road signs. Ph.D. Thesis, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.
CONASET, 2014. Observatorio de datos de accidentes. URL
Dalal, N., 2006. Finding people in images and videos. Ph.D. Thesis, Institut National Polytechnique de Grenoble.
Fleyeh, H., Biswas, R., Davami, E., July 2013. Traffic sign detection based on adaboost color segmentation and svm classification. pp. 2005–2010.
Flores, M., 2009. Sistema avanzado de asistencia a la conducción mediante visión por computador para la detección de la somnolencia. Ph.D. Thesis, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.
Flores, M., Armingol, M., Escalera de la, A., Oct 2007. New probability models for face detection and tracking in color images. IEEE International Symposium on Intelligent Signal Processing, WISP 2007., 1–6.
Fraser, B., August-September 2005. Traffic accidents scar Latin America’s roads 366, 703–704.
Greenhalgh, J., Mirmehdi, M., December 2012. Real-time detection and recognition of road traffic signs. IEEE Transactions on Intelligent Transportation Systems 13 (4), 1498–1506.
Han, Y., Virupakshappa, K., Oruklu, E., 2015. Robust traffic sign recognition with feature extraction and k-NN classification methods. In: 2015 IEEE International Conference on Electro/Information Technology (EIT). pp. 484– 488.
Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning, 2nd Edition. Springer.
Horgan, J., Hughes, C., McDonald, J., Yogamani, S., 2015. Vision-Based Driver Assistance Systems: Survey, Taxonomy and Advances. In: IEEE 18th International Conference on Intelligent Transportation Systems (ITSC). pp. 2032–2039.
Huang, Z., Yu, Y., Gu, J., 2014. A Novel Method for Traffic Sign Recognition based on Extreme Learning Machine, 1451–1456.
Jain, A. K., Li, S. Z., 2005. Handbook of Face Recognition. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Lau, M. M., Lim, K. H., Gopalai, A. A., 2015. Malaysia Traffic Sign Recognitio on with Convol lutional Neural Networ rk, 1006–1010.
Li, H., Sun, F., Liu, L., Wang, L., May 2015. A novel traffic sign detection method via color segmentation and robust shape matching. Neurocomputing. 169, 77âA ¸ ˘ S88.
Lillo, J., Mora, I., Figuera, C., Rojo, J. L., November 2015. Traffic sign segmentation and classification using statistical learning methods. Neurocomputing 1 (153), 286âA ¸ ˘ S299.
Mesriani Law Group, 2015. Accidents caused by dangerous intersections. URL
Mogelmose, A., Trivedi, M. M., Moeslund, T. B., December 2012. Visionbased traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Transactions on Intelligent Transportation Systems 13 (4), 1484–1497.
National Highway Traffic Safety Administration, 2015. URL
Nguyen, B. T., Shim, J., Kim, J. K., 1 2014. Fast traffic sign detection under challenging conditions. pp. 749–752.
Nie, Y., Chen, Q., Chen, T., Sun, Z., Dai, B., September 2012. Camera and lidar fusion for road intersection detection. pp. 273–276.
Perez-Perez, S. E., Gonzalez-Reyna, S. E., Ledesma-Orozco, S. E., AvinaCervantes, J. G., 2013. Principal component analysis for speed limit Traffic Sign Recognition. In: 2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC). pp. 1–5.
RAL, 2012. Driver assistance system. Robotics and Automation Laboratory, School of Engineering, Pontificia Universidad Católica de Chile. URL
Salti, S., Petrelli, A., Tombari, F., Fioraio, N., DiStefano, L., June 2015. Traffic sign detection via interest region extraction. Pattern Recognition 48, 1039âA ¸ ˘ S1049.
Viola, P., Jones, M., 2001a. Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. pp. I–511–I–518 vol.1.
Viola, P., Jones, M., 2001b. Robust real-time face detection. In: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. Vol. 2. pp. 747–747.
Viola, P. A., Jones, M. J., D., S., July 2005. Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision 63 (2), 153–161.
World Health Organization WHO, 2015a. La oms y la fia aúnan esfuerzos para mejorar la seguridad vial. URL
World Health Organization WHO, 2015b. Lesiones causadas por el tránsito. URL
World Health Organization WHO, 2015c. Road traffic injuries.
Zaklouta, F., Stanciulescu, B., December 2012. Real-time traffic-sign recognition using tree classifiers. IEEE Transactions on Intelligent Transportation Systems 13 (4), 1507–1514.
Zaklouta, F., Stanciulescu, B., 2014. Real-time traffic sign recognition in three stages. Robotics and Autonomous Systems 62, 16âA ¸ ˘ S24.
Descargas
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)