Diseño de un Controlador Difuso mediante la Síntesis Difusa de Lyapunov para la Estabilización de un Péndulo de Rueda Inercial

Nohe R. Cazarez-Castro, Luis T. Aguilar, Selene L. Cardenas-Maciel, Carlos A. Goribar-Jiménez, Mauricio Odreman-Vera

Resumen

En el presente trabajo se reporta el diseño de un controlador difuso tipo Mamdani para el problema de estabilización de un péndulo de rueda inercial. Las reglas difusas son obtenidas mediante la síntesis difusa de Lyapunov, lo cual permite mantener al mínimo el uso de la heurística, y desde la etapa de diseño garantizar estabilidad en lazo cerrado. Por otra parte el diseño de las reglas difusas es mucho más simple que la ardua tarea de resolver las ecuaciones diferenciales no lineales usadas tradicionalmente para modelar sistemas de control. Merece énfasis especial el hecho de que el diseño se hace libre del modelo matemático del sistema a controlar.

Palabras clave

Control difuso; Estabilidad de Lyapunov; Sistema subactuado

Texto completo:

PDF

Referencias

Andary, S., Chemori, A., Krut, S., 2009. Control of the underactuated inertia wheel inverted pendulum for stable limit cycle generation. Advanced Robotics 23 (15), 1999–2014.

Andrievsky, B., 2011. Global stabilization of the unstable reaction-wheel pendulum. Automation and Remote Control 72 (9), 1981–1993.

Becerikli, Y., Celik, B. K., 2007. Fuzzy control of inverted pendulum and concept of stability using java application. Mathematical and Computer Modelling 46 (1,2), 24 – 37.

Brockett, R., 1983. Differential Geometric Control Theory. Birkhäuser, Boston, Ch. Asymptotic stability and feedback stabilization, pp. 181–191.

Castillo, O., Aguilar, L., Cazarez, N., Cardenas, S., 2008. Systematic design of a stable type-2 fuzzy logic controller. Applied Soft Computing 8 (3), 1274 – 1279.

Castillo, O., Cazarez, N., Aguilar, L., Rico, D., 2006. Intelligent control of dynamic systems using type-2 fuzzy logic and stability issues. International Mathematical Forum 1 (28), 1371–1382.

Cazarez-Castro, N. R., Aguilar, L. T., Castillo, O., 2010. Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash. Expert Systems with Applications 37 (6), 4368 – 4378.

Hernández, V. M., 2003. A combined sliding mode-generalized pi control scheme for swinging up and balancing the inertia wheel pendulum. Asian Journal of Control 5 (4), 620–625.

Iriarte, R., Aguilar, L. T., Fridman, L., 2013. Second order sliding mode tracking controller for inertia wheel pendulum. Journal of the Franklin Institute 350 (1), 92–106.

Kelly, R., Llamas, J., Campa, R., Aug 2000. A measurement procedure for viscous and coulomb friction. Instrumentation and Measurement, IEEE Transactions on 49 (4), 857–861.

Khalil, H. K., 2002. Nonlinear Systems, 3rd Edition. Prentice Hall, EEUU.

Korotnikov, V., 1998. Partial Stability and Control, 1st Edition. SpringerBirkhäuser Basel, EEUU.

Lyapunov, A., 1892. The general problem of the stability of motion (in russian). Phd, Univ. Kharkov.

Mamdani, E., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7 (1), 1–13.

Margaliot, M., Langholz, G., 1999. Fuzzy lyapunov-based approach to the design of fuzzy controllers. Fuzzy Sets and Systems 106 (1), 49–59.

Martinez-Soto, R., Rodriguez, A., Castillo, O., Aguilar, L. T., 2012. Gain optimization for inertia wheel pendulum stabilization using particle swarm optimization and genetic algorithms. International Journal of Innovative Computing, Information and Control 8 (6), 4421–4430.

Ng, W. M., Chang, D. E., Song, S.-H., 2013. Four representative applications of the energy shaping method for controlled lagrangian systems. Journal of Electrical Engineering and Technology 8 (6), 1579–1589.

Qaiser, N., Iqbal, N., Hussain, A., Qaiser, N., 2006. Stabilization of non-linear inertia wheel pendulum system using a new dynamic surface control based technique. In: Engineering of Intelligent Systems, 2006 IEEE International Conference on. pp. 1–6.

Qaiser, N., Iqbal, N., Hussain, A., Qaiser, N., 2007. Exponential stabilization of the inertia wheel pendulum using dynamic surface control. Journal of Circuits, Systems and Computers 16 (01), 81–92.

Ye, H., Wang, H., Wang, H., Nov 2007. Stabilization of a pvtol aircraft and an inertia wheel pendulum using saturation technique. IEEE Transactions on Control Systems Technology 15 (6), 1143–1150.

Yi, J., Yubazaki, N., 2000. Stabilization fuzzy control of inverted pendulum systems. Artificial Intelligence in Engineering 14 (2), 153 – 163.

Abstract Views

1317
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912