Análisis Cinemático del Manipulador Paralelo 4-PRUR Mediante la Teoría de Tornillos

Jaime Gallardo-Alvarado, Mario A. García Murillo

Resumen

En este trabajo se presenta el análisis cinemático de un robot paralelo generador del movimiento de Schönflies por medio de la teoría de tornillos. Como un paso intermedio, el análisis de posición se obtiene en forma semi-cerrada con base en las coordenadas de dos puntos de la plataforma móvil. Esta estrategia requiere de sólo un marco de referencia, evitando así el cálculo de la matriz de rotación. Las ecuaciones entrada-salida de velocidad y de aceleración se obtienen sistemáticamente recurriendo a la teoría de tornillos recíprocos. Para ello, el robot se modela como si fuese un manipulador paralelo de seis grados de libertad gracias a la incorporación de pares cinemáticos ficticios que conectan las extremidades con la plataforma fija y una cadena cinemática virtual con la finalidad de aplicar sin restricciones el álgebra de Lie se(3) del grupo Euclideo SE(3). El análisis de singularidades se aborda con base en la ecuación entrada-salida de velocidad. Se incluyen ejemplos numéricos que muestran la aplicación del método.

Palabras clave

Robot paralelo; movimientos de Schönflies; Teoría de tornillos; Cinemática

Texto completo:

PDF

Referencias

Alessandro, C., Rosario, S., 2014. Elastodynamic optimization of a 3T1R parallel manipulator. Mechanism and Machine Theory 73, 184–196.

Altuzarra, O., Pinto, C., Sandru, B., Hernandez, A., 2011. Optimal dimensioning for parallel manipulators: Workspace, dexterity, and energy. Journal of Mechanical Design 133 (4), 041007.

Amine, S., Masouleh, M. T., Caro, S., Wenger, P., Gosselin, C., 2012. Singularity conditions of 3T1R parallel manipulators with identical limb structures. Journal of Mechanisms and Robotics 4 (1), 011011.

Angeles, J., Caro, S., Khan, W., Morozov, A., 2006a. The design and prototyping of an innovative schonflies motion generator. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science 220 (C7), 935–944.

Angeles, J., Caro, S., Khan, W., Morozov, A., 2006b. Kinetostatic design of an innovative schonflies-motion generator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220 (7), 935–943.

Bonev, I. A., Zlatanov, D., Gosselin, C. M., 2003. Singularity analysis of 3- DOF planar parallel mechanisms via screw theory. Journal of Mechanical Design 125 (3), 573–581.

Cao, Y., Chen, H., Qin, Y., Liu, K., Ge, S., Zhu, J., Wang, K., Yu, J., Ji, W., Zhou, H., 2016. Type synthesis of fully-decoupled three-rotational and onetranslational parallel mechanisms. Int J Adv Robot Syst 13, 79.

Cervantes-Sanchez, ´ J. J., Rico-Mart´ınez, J. M., Perez-Mu ´ noz, ˜ V. H., 2016. An integrated study of the workspace and singularity for a schonflies parallel ¨ manipulator. Journal of applied research and technology 14 (1), 9–37.

Chen, Q., Li, Q., Wu, C., Hu, X., Huang, Z., June 2009. Mobility analysis of 4- RPRPR and 4-RRRPR parallel mechanisms with bifurcation of schoenflies motion by screw theory. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. pp. 279–284.

Choi, H.-B., Ryu, J., 2012. Singularity analysis of a four degree-of-freedom parallel manipulator based on an expanded 6× 6 jacobian matrix. Mechanism and Machine Theory 57, 51–61.

Clavel, R., April 1988. Delta, a fast robot with parallel geometry. In: Proceedings 18th international symposyum on industrial robots. Lausanne: IFS Publications, Switzerland, pp. 91–100.

Corves, B., Brinker, J., Lorenz, M., Wahle, M., 2016. Design methodology for translational parallel manipulators exhibiting actuation redundancy. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230 (3), 425–436.

Gallardo-Alvarado, J., 2014. A simple method to solve the forward displacement analysis of the general six-legged parallel manipulator. Robotics and Computer-Integrated Manufacturing 30 (1), 55–61.

Gallardo-Alvarado, J., 2016. Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Springer International Publishing Switzerland.

J, V., 1999. Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans Math Soft 25, 251–76.

Kang, L., Oh, S.-M., Kim, W., Yi, B.-J., 2015. Design of a new gravity balanced parallel mechanism with schonflies motion. Proceedings ¨ of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. DOI: 10.1177/0954406215605862

Kim, S. M., Shin, K., Yi, B.-J., Kim, W., 2014. Development of a novel twolimbed parallel mechanism having schonflies motion. Proceedings ¨ of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406214532633.

Kim, S. M., Shin, K., Yi, B.-J., Kim, W., 2015. Development of a novel twolimbed parallel mechanism having schonflies motion. Proceedings ¨ of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229 (1), 136–154.

Kim, S. M., Yi, B.-J., Kim, W., 2013. Forward kinematic singularity avoiding design of a schonflies motion generator ¨ by asymmetric attachment of subchains. International Journal of Control, Automation and Systems 11 (1), 116–126.

Lee, P.-C., 2013. One novel isoconstrained parallel robot with schoenfliesmotion. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. V06BT07A005–V06BT07A005.

Lee, P.-C., Lee, J.-J., 2016. On the kinematics of a new parallel mechanism with schoenflies motion. Robotica 34 (9), 2056–2070.

Liu, S., Huang, T., Mei, J., Zhao, X., Wang, P., Chetwynd, D. G., 2012. Optimal design of a 4-DOF SCARA type parallel robot using dynamic performance indices and angular constraints. Journal of Mechanisms and Robotics 4 (3), 031005.

Makino, H., Furuya, N., 1982. Scara robot and its family. In: Proc. 3rd Int. Conf. on Assembly Automation. pp. 433–444.

Masouleh, M. T., Gosselin, C., Saadatzi, M. H., Kong, X., Taghirad, H. D., 2011a. Kinematic analysis of 5-RPUR (3T2R) parallel mechanisms. Meccanica 46 (1), 131–146.

Masouleh, M. T., Walter, D. R., Husty, M., Gosselin, C., 2011b. Solving the forward kinematic problem of 4-DOF parallel mechanisms (3T1R) with identical limb structures and revolute actuators using the linear implicitization algorithm. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. 969–978.

Nurahmi, L., Caro, S., Wenger, P., Schadlbauer, J., Husty, M., 2016. Reconfiguration analysis of a 4-RUU parallel manipulator. Mechanism and Machine Theory 96, 269–289.

Pierrot, F., Nabat, V., Company, O., Krut, S., Poignet, P., 2009. Optimal design of a 4-dof parallel manipulator: from academia to industry. IEEE Transactions on Robotics 25 (2), 213–224.

Richard, P.-L., Gosselin, C. M., Kong, X., 2007. Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator. Journal of Mechanical Design 129 (6), 611–616.

Rolland, L., 1999. The manta and the kanuk: Novel 4-dof parallel mechanisms for industrial handling. Proc. of ASME Dynamic Systems and Control Division IMECE 99, 831–844.

Salgado, O., Altuzarra, O., Petuya, V., Hernandez, A., 2008. Synthesis and de- ´ sign of a novel 3T1R fully-parallel manipulator. Journal of Mechanical Design 130 (4), 042305.

Schonflies, A., 1887. ¨ Uber gruppen ¨ von bewegungen. Mathematische Annalen 28 (3), 319–342.

Solazzi, M., Gabardi, M., Frisoli, A., Bergamasco, M., 2014. Kinematics analysis and singularity loci of a 4-UPU parallel manipulator. In: Advances in Robot Kinematics. Springer, pp. 467–474.

Tsai, L.-W., 1999. Robot analysis: the mechanics of serial and parallel manipulators. John Wiley & Sons.

Varshovi-Jaghargha, P., Naderia, D., Tale-Masoulehb, M., 2014. Forward kinematic problem of three 4-DOF parallel mechanisms (4-PRUR1, 4-PRUR2 and 4-PUU) with identical limb structures performing 3T1R motion pattern. Scientia Iranica B.

Wu, G., 2016. Kinematic analysis and optimal design of a wall-mounted fourlimb parallel schonflies-motion robot for pick-and-place operations. Journal ¨ of Intelligent & Robotic Systems, 1–15.

Xie, F., Liu, X.-J., 2015. Design and development of a high-speed and highrotation robot with four identical arms and a single platform. Journal of Mechanisms and Robotics 7 (4), 041015.

Xie, F., Liu, X.-J., 2016. Analysis of the kinematic characteristics of a highspeed parallel robot with schonflies motion: Mobility, kinematics, and singularity. Frontiers of Mechanical Engineering 11 (2), 135–143.

Yi, B.-J., Kim, S. M., Kwak, H. K., Kim, W., 2013. Multi-task oriented design of an asymmetric 3T1R type 4-DOF parallel mechanism. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (10), 2236–2255.

Zhao, J.-S., Fu, Y.-Z., Zhou, K., Feng, Z.-J., 2006. Mobility properties of a schoenflies-type parallel manipulator. Robotics and Computer-Integrated Manufacturing 22 (2), 124–133.

Abstract Views

839
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Kinematics and dynamics of a 4- P RUR Schönflies parallel manipulator by means of screw theory and the principle of virtual work
Jaime Gallardo-Alvarado, Ramón Rodríguez-Castro, Pedro J. Delossantos-Lara
Mechanism and Machine Theory  vol: 122  primera página: 347  año: 2018  
doi: 10.1016/j.mechmachtheory.2017.12.022



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912