Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3

Eliher A. Ortiz Colín, Ilver H. Hernández González, Jaime J. Rodríguez Rivas, Óscar Carranza Castillo, Rubén Ortega González, Roberto Morales Caporal

Resumen

En este trabajo se presenta la implementación digital del algoritmo de modulación de Sünter-Clare, para un convertidor matricial de tres hilos de 7.5 kVA. Este algoritmo es usado para calcular los ciclos de trabajo en un convertidor matricial 3x3, con lo que se generan tensiones de salida con amplitud y frecuencia constantes. El algoritmo de modulación de Sünter-Clare recalcula los tiempos y trayectorias de conmutación cada período de muestreo, con el objetivo de compensar las variaciones de amplitud y de frecuencia de las tensiones de entrada. Este algoritmo se ejecuta en cada muestreo y está en función de la tensión trifásica de entrada y de la tensión de referencia de salida, resultando adecuado para controles en lazo cerrado, cuando las señales de amplitud y de frecuencia de las tensiones de entrada son variables en el tiempo, como ocurre en los sistemas de generación de energía eléctrica a velocidad variable, que utilizan la energía del viento como fuente primaria de energía. El sistema de control para el trabajo experimental, además de la tarjeta del convertidor matricial, está compuesto por una tarjeta de arreglos de compuertas programable (FPGA) y por un procesador digital de señales (DSP) con una tarjeta de interfaz gráfica.

Palabras clave

Convertidor matricial; algoritmo de modulación Sünter-Clare; distorsión total armónica

Texto completo:

PDF

Referencias

Altun, H., Sünter, S., 2003. Matrix converter induction motor drives: modeling, simulation and control. Journal of Electrical Eng., Vol. 86, No. 1, pp 25- 33.

Arevalo, S., Zanchetta, P., Wheeler, P.W., Trentin, A., Empringham, L., 2010. Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing. IEEE Trans. on Ind. Elect., Vol. 57, No. 6, pp. 2076-2084.

Barater, D., Buticchi, G., Concari, C., Concari, L., Franceschini, G., 2013. Single-phase matrix converter for active power filter applications. 39th Annual Conference of the IEEE Industrial Electronics Society (IECON´2013).

Burany, N., 1989. Safe control of four-quadrant switches. Industry Applications Society Annual Meeting, Vol. 1, pp. 1190-1194.

Bucknall, R.W.G., Ciaramella, K.M., 2010. On the conceptual design and performance of a matrix converter for marine electric propulsion. IEEE Trans. on Power Elect., Vol. 25, No. 6, pp. 1497-1508.

Chai, M., Xiao, D., Dutta, R., Fletcher, J.E., 2016. Space vector PWM techniques for three-to-five-phase indirect matrix converter in the overmodulation region. IEEE Trans. on Ind. Elect., Vol. 63, No. 1, pp. 550- 561.

Cardenas, R., Peña, R., Wheeler, P., Clare, J., Juri, C., 2014. Control of a matrix converter for the operation of autonomous systems. Renewable Energy, ELSEVIER, Vol. 43, pp. 343-353.

Casadei, D., Serra, G., Tani, A., Zarri, L., 2002. Matrix Converter Modulation Strategies: A new general approach based on space-vector representation of the switch state. IEEE Trans. on Ind. Elect., Vol. 49, No. 2, pp. 370-381.

Empringham, L., Wheeler, P.W., Clare, J.C., 1998. Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques. 29th Annual IEEE Power Electronics Specialists Conference (PESC). Vol.1, pp. 707-713.

Guo, Y., Deng, W., Zhu, J., Blaabjerg, F., 2014. An Improved 4-step Commutation Method Application for Matrix Converter. 17th International Conference on Electrical Machines and Systems (ICEMS´2014).

Gupta, R.A., Kumar, R., Sangtani, V., 2014. Direct torque controlled matrix converter fed induction motor drive. 2014 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 698-703.

Hongwu, S., Hua L., Xingwei W., Limin Y., 2009. Damped input filter design of matrix converter. International Conference on Power Electronics and Drive Systems (PEDS 2009), pp.672,677.

Huber, L., Borojevic, D., Burany, N., 1992. Analysis, design and implementation of the space-vector modulator for forced-commutated cycloconvertors. IEE Proceeding B: Electric Power Applications, Vol. 139, No. 2, pp.103–113.

Hyosung, K., Seung-Ki, S., 2009. Analysis on output LC filters for PWM inverters. IEEE 6th International Power Electronics and Motion Control Conference (IPEMC´2009), pp. 384-389.

Jayasinghe, S.D.G., Vilathgamuwa, D.M., 2011. A modular matrix converter for transformer-less PMSG wind generation system. 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), pp. 474-479.

Kolar, J.W., Baumann, M., Schafmeister, F., Ertl, H., 2002. Novel three-phase AC-DC-AC sparse matrix converter. The IEEE Seventeenth Annual Applied Power Electronics Conference and Exposition, (APEC), Vol. 2, pp. 777-791.

Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, 2009. Model predictive control, a simple and powerful method to control power converters. IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1826-1838.

Lee, M. Y., Wheeler, P., Klumpner, C., 2010. Space-vector modulated multilevel matrix converter. IEEE Trans. on Ind. Elect., Vol. 57, No. 10, pp. 3385-3394.

Lillo, de L., 2006. A matrix converter drive system for aircraft rudder electromechanical actuator. Ph. D. Thesis, University of Nottingham, England.

Nguyen, T. D., Lee, H.H., 2016. Development of a three-to-five-phase indirect matrix converter with carrier-based PWM based on space-vector modulation analysis. IEEE Trans. on Ind. Elect., Vol. 63, No. 1, pp. 13-24.

Oyama, J., Higuchi, T., Yamada, E., Koga, T. Lipo, T., 1989. New control strategy for matrix converter. 20th. Annual IEEE Power Elect. Specialist Conference, Vol. 1, pp. 360-367.

Pinto, S.F., Silva, J.F., 2001. Input filter design for sliding mode controlled matrix converters. 32 Annual Power Electronics Specialists Conference (PESC´2001), Vol. 2, pp. 648-653.

Prabhakar, K.K., Singh, A.K., Reddy, C.U., Kumar, P., 2014. Drive system for electric vehicle power train application using DC to AC matrix converter. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES’ 2014).

Ratanapanachote, S., Cha, H.J. Enjeti, P.N., 2006. A digitally controlled switch mode power supply based on matrix converter. IEEE Trans. on Power Elect., Vol. 21, No. 1, pp. 124-130.

Reyes, E., Peña, R., Cárdenas, R., Clare, J., Wheeler, P., Gimenez, R.B., 2008. A topology for multiple generation system with doubly fed induction machines and indirect matrix converter. IEEE International Symposium on Industrial Electronics, pp. 2463-2468.

Robles, E.L., Rodríguez, J.J., Peralta, E., Carranza, O., 2015. Voltage regulation of a matrix converter with balanced and unbalanced three-phase loads. Journal of Applied Research and Technology, Vol. 13, pp.510-522.

Rodriguez, J.J., Caporal, R.M., Peralta, E., Carranza, O., Ortega R., 2016. Optimal Venturini modulation for a three-phase four-wire matrix converter. IEEE Latin America Transactions, Vol. 14, No. 2.

Rodriguez, J., Rivera, M., Kolar, J.W., Wheeler, P.W., 2012. A review of control and modulation methods for Matrix Converters. IEEE Trans. on Ind. Elect., Vol. 59, No. 1, pp. 58-70.

Roy, G., April, G.E., 1989. Cycloconverter operation under a new scalar control algorithm. 20th Annual IEEE Power Electron. Spec. Conf., Vol. 1, pp.

Sun, K., Huang, L., Matsuse, K., 2007. An improved matrix converter fed induction motor vector control drive with output voltage error cancellation. Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, pp. 250-255.

Sun, Y., Xiong, W., Su, M., Li, X., Dan, H., Yang, J., 2016. Carrier-based modulation strategies for multimodular matrix converters. IEEE Trans. on Ind. Elect., Vol. 63, No. 3, pp. 1350-1361.

Vargas, R., Ammann, U., Hudoffsky, B., Rodriguez, J., Wheeler, P., 2010. Predictive torque control of an induction machine fed by a matrix converter with reactive input power control. IEEE Trans. on Power Electron., Vol. 25, No. 6, pp. 1426–1438.

Venturini, M., 1980. A new sine wave in sine wave out conversion technique which eliminate reactive elements. Seventh National Solid-State Power Conversion Conference (POWERCON 7), pp. E3_1-E3_5.

Wheeler, P.W., 1999. Matrix converters study final report. Chapter 1, University of Nottingham, School of Electrical and Electronic Engineering, England.

Wheeler, P.W., Rodríguez, J., Clare, J.C., Empringham, L., Weinstein, A., 2002. Matrix converters: a technology review. IEEE Trans. on Ind. Elect., Vol. 49, No. 2.

Wheeler, P.W., Clare, J.C., Apap, M., Empringham, L., Lilo, L. de Bradley, K., Whitley, C., Towers, G., 2004. An electro-hydrostatic aircraft actuator using a matrix converter permanent magnet motor drive. 2nd International Conference on Power Electronics, Machines and Drives, (PEMD), Vol. 2, pp. 464-468.

Yamasaki, M., Sakaki, K., Matsuse, K., 2012. Characteristics of vector control two induction motor drives fed by matrix converter. 15th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-5.

Yoon, Y.D., Sul, S.K., 2006. Carrier-based modulation technique for matrix converter,” IEEE Trans. on Power Elect., Vol. 21, No. 6, pp. 1691-1703.

Abstract Views

741
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912