Nuevo Enfoque para la Clasificación de Señales EEG usando la Varianza de la Diferencia entre las Clases de un Clasificador Bayesiano

Thomaz R. Botelho, Douglas Soprani, Camila Rodrigues, André Ferreira, Anselmo Frizera

Resumen

Los avances en robótica de rehabilitación están beneficiando en gran medida a los pacientes con discapacidad física. Los dispositivos de asistencia y rehabilitación pueden basar su funcionamiento en información fisiológica de los músculos y del cerebro a través de electromiografía (EMG) y electroencefalografía (EEG), para detectar la intención de movimiento de los usuarios. En este trabajo se presenta una propuesta de interfaz multimodal para la adquisición, sincronización y procesamiento de señales EEG y de sensores inerciales, para ser aplicada en tareas de rehabilitación con exoesqueletos robóticos. Se realizaron experimentos con individuos sanos con el objetivo de analizar la intención de movimiento, la activación muscular e inicio de movimiento durante los movimientos de extensión de la rodilla. Esta propuesta es un nuevo enfoque para la clasificación de señales EEG usando un clasificador bayesiano tomando en cuenta la varianza de la diferencia entre las clases usadas. El aporte de este trabajo se sustenta con los resultados que muestran un incremento del 30% en la precisión de clasificación con señales EEG en comparación con los enfoques tradicionales de clasificación, en un análisis off-line para el reconocimiento de la intención de movimiento de los miembros inferiores.

Palabras clave

Interfaz hombre-máquina; Análisis de señales; Sistemas biomédicos; Unidades de medición inercial; Cerebro humano; Movimiento

Texto completo:

PDF

Referencias

Ada, L., Dean, C. M., Vargas, J., Ennis, S., 2010. Mechanically assisted walking with body weight support results in more independent walking than assisted overground walking in non-ambulatory patients early after stroke: A systematic review. Journal of Physiotherapy 56 (3), 153–161. DOI: 10.1016/S1836-9553(10)70020-5

Arnold, P., Bautmans, I., 2014. The influence of strength training on muscle activation in elderly persons: A systematic review and meta-analysis. Experimental Gerontology 58, 58–68. DOI: 10.1016/j.exger.2014.07.012

Benevides, A. B., Bastos Filho, T. F., Sarcinelli Filho, M., 2008. Mental Task Recognition Based on EEG for Commanding a Robotic Wheelchair. In: 3rd Applied Robotics and Collaborative Systems Engineering (Robocontrol 08). p. 8.

Bertrand, O., Perrin, F., Pernier, J., 1985. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalography and clinical neurophysiology 62 (6), 462–464. DOI: 10.1016/0168-5597(85)90058-9

Botelho, T., Soprani, D., Schneider, P., Carvalho, C., Vargas, L., Frizera, A., 2015. Uma Proposta De Protocolo De Colocaçao De Sensores Inerciais Utilizando Alinhamento Virtual Para Aplicaçoes Em Análise De Movimento De Membros Inferiores. In: Anais do V Encontro Nacional de Engenharia Biomecânica ENEBI 2015. Uberlandia, Brasil, pp. 511–515.

Cheng, M., Jia, W., Gao, X., Gao, S., Yang, F., 2004. Mu rhythm-based cursor control: An offline analysis. Clinical Neurophysiology 115 (4), 745–751. DOI: 10.1016/j.clinph.2003.11.038

Gallego, J. A., ´ Iba´nez, J., Dideriksen, ˜ J. L., Serrano, J. I., del Castillo, M. D., Farina, D., Rocon, E., 2012. A multimodal human-robot interface to drive a neuroprosthesis for tremor management. IEEE Transactions on Systems, Man, and Cybernetics 42 (6), 1159–1168.

Gourab, K., Schmit, B. D., 2010. Changes in movement-related u-band EEG signals in human spinal cord injury. Clinical Neurophysiology 121 (12), 2017–2023. DOI: 10.1016/j.clinph.2010.05.012

Guger, C., Vaughan, T., Allison, B., 2014. Brain-Computer Interface Research: A State-of-the-Art Summary 3. SpringerBriefs in Electrical and Computer Engineering. Springer International Publishing. DOI: 10.1007/978-3-319-09979-8

Guyton, A. C., Hall, J. E., 2006. Textbook of medical physiology, 11th Edition. Elsevier Saunders, Philadelphia.

Hudgins, B., Parker, P., Scott, R. N., 1993. A New Strategy for Multifunction Myoelectric Control. IEEE Transactions on Biomedical Engineering 40 (1), 82–94. DOI: 10.1109/10.204774

Husemann, B., Muller, F., Krewer, C., Heller, S., Koenig, E., 2007. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: A randomized controlled pilot study. Stroke 38 (2), 349–354. DOI: 10.1161/01.STR.0000254607.48765.cb

Ibañez, J., Serrano, J., del Castillo, M., Gallego, J., Rocon, E., nov 2013. Online detector of movement intention based on EEG-Application in tremor patients. Biomedical Signal Processing and Control 8 (6), 822–829. DOI: 10.1016/j.bspc.2013.07.006

Jiang, N., Gizzi, L., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2015. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clinical Neurophysiology 126 (1), 154– 159. DOI: 10.1016/j.clinph.2014.05.003

Ju, M.-S., Lin, C.-C. K., Lin, D.-H., Hwang, I.-S., Chen, S.-M., sep 2005. A Rehabilitation Robot With Force-Position Hybrid Fuzzy Controller: Hybrid Fuzzy Control of Rehabilitation Robot. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society 13 (3), 349–58. DOI: 10.1109/TNSRE.2005.847354

Kirchner, E. A., Tabie, M., Seeland, A., jan 2014. Multimodal movement prediction - towards an individual assistance of patients. PloS one 9 (1), e85060. DOI: 10.1371/journal.pone.0085060

Latikka, J. A., Hyttinen, J. A., Kuurne, T. A., Eskola, H. J., Malmivuo, J. A., 2001. The conductivity of brain tissues: Comparison of results in vivo and in vitro measurements. Annual Reports of the Research Reactor Institute, Kyoto University 1, 910–912. DOI: 10.1109/IEMBS.2001.1019092

Lu, M.-K., Jung, P., Bliem, B., Shih, H.-T., Hseu, Y.-T., Yang, Y.-W., Ziemann, U., Tsai, C.-H., apr 2010. The Bereitschaftspotential in essential tremor. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 121 (4), 622–630. DOI: 10.1016/j.clinph.2009.12.014

Mackay, J., Mensah, G., 2004. Global Burden of Stroke. In: The Atlas of Heart Disease and Stroke. World Health Organization, Ch. The Burden, pp. 50–51.

Mrachacz-Kersting, N., Kristensen, S. R., Niazi, I., Farina, D., apr 2012. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. The Journal of physiology 590 (Pt 7), 1669–82. DOI: 10.1113/jphysiol.2011.222851

Mrachacz-Kersting, N., Stevenson, A. J. T., Aliakbaryhosseinabadi, S., Lundgaard, A. C., Jørgensen, H. R., Severinsen, K., Farina, D., 2017. An Associative Brain-Computer-Interface for Acute Stroke Patients. Springer International Publishing, Cham, pp. 841–845. DOI: 10.1007/978-3-319-46669-9 137

Muller-Putz, ¨ G. R., Daly, I., Kaiser, V., 2014. Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on braincomputer interface accuracy. Journal of neural engineering 11 (3), 035011. DOI: 10.1088/1741-2560/11/3/035011

Niazi, I. K., Jiang, N., Tiberghien, O., Nielsen, J. F., Dremstrup, K., Farina, D., oct 2011. Detection of movement intention from single-trial movementrelated cortical potentials. Journal of Neural Engineering 8 (6), 066009. DOI: 10.1088/1741-2560/8/6/066009

Pfurtscheller, G., Da Silva, F. L., nov 1999. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 110 (11), 1842–57.

Shibasaki, H., Hallett, M., nov 2006. What is the Bereitschaftspotential? Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 117 (11), 2341–56. DOI: 10.1016/j.clinph.2006.04.025

Strong, K., Mathers, C., Bonita, R., 2007. Preventing stroke: saving lives around the world. Lancet Neurology 6 (2), 182–187. DOI: 10.1016/S1474-4422(07)70031-5

Tsukahara, A., Hasegawa, Y., Sankai, Y., jun 2009. Standing-up motion support for paraplegic patient with Robot Suit HAL. 2009 IEEE International Conference on Rehabilitation Robotics, 211–217. DOI: 10.1109/ICORR.2009.5209567

Volkers, K. M., de Kieviet, J. F., Wittingen, H. P., Scherder, E. J. A., 2012. Lower limb muscle strength (LLMS): Why sedentary life should never start? A review. Archives of Gerontology and Geriatrics 54 (3), 399–414. DOI: 10.1016/j.archger.2011.04.018

Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., Deruyter, F., Eng, J. J., Fisher, B., Harvey, R. L., Lang, C. E., Mackay-lyons, M., Ottenbacher, K. J., Pugh, S., Reeves, M. J., Richards, L. G., Otr, L., Stiers, W., Rp, A., 2016. AHA / ASA Guideline: Guidelines for Adult Stroke Rehabilitation and Recovery. DOI: 10.1161/STR.0000000000000098

Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2014. Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. IEEE Transactions on Biomedical Engineering 61 (2), 288–296. DOI: 10.1109/TBME.2013.2294203

Xu, R., Jiang, N., Mrachacz-Kersting, N., Dremstrup, K., Farina, D., 2016. Factors of influence on the performance of a short-latency non-invasive brain switch: Evidence in healthy individuals and implication for motor function rehabilitation. Frontiers in Neuroscience 9 (JAN), 1–9. DOI: 10.3389/fnins.2015.00527

Yang, S., Kong, L., 2009. Research on characteristic extraction of human gait. 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009, 2–5. DOI: 10.1109/ICBBE.2009.5163328

Abstract Views

1151
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912