Control en Estaciones Depuradoras de Aguas Residuales: Estado actual y perspectivas

Ramón Vilanova, Ignacio Santín, Carles Pedret

Resumen

Este trabajo constituye la segunda parte de una revisión de la problemática del control de estaciones depuradoras de aguas residuales (EDAR) para el tratamiento de agua residual urbana. Después de haber presentado en la primera parte las perspectivas correspondientes al modelado y simulación, en esta segunda parte nos centramos en el control de las mismas. Esta depuración se realiza, mayoritariamente, mediante procesos biológicos, concretamente, mediante el denominado proceso de fangos activados. El hecho de tratar con un proceso biológico conlleva una elevada complejidad tanto desde el punto de vista de modelado como, por supuesto, de control. Se revisa el control de EDAR desde su perspectiva histórica, como de los lazos de control más usuales, problemáticas que presentan y algunas de las soluciones propuestas. Se realiza también una revisión de la aplicación de las diferentes técnicas de control catalogándolas de acuerdo a su filosofía. Para terminar se ofrece una visión de las tendencia actuales y perspectivas de desarrollos futuros.

Palabras clave

Estaciones depuradoras de aguas residuales; benchmarking; control y operación

Texto completo:

PDF

Referencias

Achleitner, S., Moderl, M., Rauch, W., aug 2007. CITY DRAIN c – an open source approach for simulation of integrated urban drainage systems. Environmental Modelling & Software 22 (8), 1184–1195. DOI: 10.1016/j.envsoft.2006.06.013

Åmand, L., Carlsson, B., may 2012. Optimal aeration control in a nitrifying activated sludge process. Water Research 46 (7), 2101–2110. DOI: 10.1016/j.watres.2012.01.023

Astaraie-Imani, M., Kapelan, Z., Fu, G., Butler, D., dec 2012. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. Journal of Environmental Management 112, 1–9. DOI: 10.1016/j.jenvman.2012.06.039

Baeza, J., Gabriel, D., Lafuente, J., mar 1999. An expert supervisory system for a pilot WWTP. Environmental Modelling & Software 14 (5), 383–390. DOI: 10.1016/s1364-8152(98)00101-7

Baeza, J., Gabriel, D., Lafuente, J., apr 2002. Improving the nitrogen removal efficiency of an a2/o based WWTP by using an on-line knowledge based expert system. Water Research 36 (8), 2109–2123. DOI: 10.1016/s0043-1354(01)00402-x

Baeza, J., Gabriel, D., Lafuente, J., jul 2004. Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (a2/o) wastewater treatment plant (WWTP). Process Biochemistry 39 (11), 1615–1624. DOI: 10.1016/s0032-9592(03)00300-5

Barbu, M., Vilanova, R., Meneses, M., Santin, I., 2017. On the evaluation of the global impact of control strategies applied to wastewater treatment plants. Journal of Cleaner Production 149, 396–405.

Barnett, M. W., Andrews, J. F., 1990. Knowledge based systems for operation of wastewater treatment processes. En: Instrumentation, Control and Automation of Water and Wastewater Treatment and Transport Systems. Elsevier, pp. 211–218. DOI: 10.1016/b978-0-08-040776-0.50029-9

Baruch, I. S., Georgieva, P., Barrera-Cortes, J., de Azevedo, S. F., 2004. Adaptive recurrent neural network control of biological wastewater treatment. International Journal of Intelligent Systems 20 (2), 173–193. DOI: 10.1002/int.20061

Bastin, G., Dochain, D., 1990. On-line Estimation and Adaptive Control of Bioreactors (Process Measurement and Control). Elsevier Science.

Belchior, C. A. C., Araujo, R. A. M., Landeckb, J. A. C., 2011. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control. Computer and Chemical Engineering 37, 152–162.

Benedetti, L., De Baets, B., Nopens, I., Vanrolleghem, P. A., 2010. Multicriteria analysis of wastewater treatment plant design and control scenarios under uncertainty. Environmental modelling & software 25 (5), 616–621.

Beraud, B., Lemoine, C., Steyer, J.-P., 2009. Multiobjective genetic algorithms for the optimisation of wastewater treatment processes. En: Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control. Springer Nature, pp. 163–195.

Biswas, P., Bose, P., Tare, V., 2007. Optimal choice of wastewater treatment train by multi-objective optimization. Engineering Optimization 39 (2), 125–145.

Bracken, B., Flanagan, M., 1977. Design recommendations for automatic disolved oxygen control. Prog. Wat. Tech. 9 (5/6), 551–555.

Brdys, M., Grochowski, M., Gminski, T., Konarczak, K., Drewa, M., 2008. Hierarchical predictive control of integrated wastewater treatment systems. Control Engineering Practice 16 (6), 751–767.

Brdys, M., Konarzcak, K., 18-20 July 2001. Dissolved oxygen control for activated sludge processes. En: Proc. of the 9th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory Applications. Bucharest, Romania.

Brdys, M., Ma´ıquez, J. D., 2002. Application of fuzzy model predictive control to the dissolved oxygen concentration tracking in an activated sludge process. IFAC Proceedings Volumes 35 (1), 35–40.

Bridle T., Shaw A., C. S. Y. K. C. T. K., Domurad, M., 2008. Estimation of greenhouse gas emissions from wastewater treatment plants. En: In Proceedings of the IWA World Water Congress, Vienna, Austria, September 7-12 2008.

Butler, D., Schutze, M., 2005. Integrating simulation models with a view to optimal control of urban wastewater systems. Environmental Modelling & Software 20 (4), 415–426.

Chen, G., Pham, T. T., 2000. Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems. CRC Press, Boca Raton, Florida, United States.

Chotkowski, W., Brdys*, M. A., Konarczak, K., 2005. Dissolved oxygen control for activated sludge processes. International Journal of Systems Science 36 (12), 727–736.

Copp, J. B., 2002. The Cost Simulation benchmark: Description and simulator manual (COST Action 624 and Action 682). Luxembourg: Office for Official Publications od the European Union.

Corominas, L., Foley, J., Guest, J., Hospido, A., Larsen, H., Morera, S., Shaw, A., oct 2013. Life cycle assessment applied to wastewater treatment: State of the art. Water Research 47 (15), 5480–5492. DOI: 10.1016/j.watres.2013.06.049

Cristea, S., de Prada, C., Sarabia, D., Gutierrez, G., 2011. Aeration control ´ of a wastewater treatment plant using hybrid NMPC. Computers & Chemical Engineering 35 (4), 638–650. URL: https://doi.org/10.1016/j.compchemeng.2010.07.021 DOI: 10.1016/j.compchemeng.2010.07.021

Dapena-Mora, A., Hulle, S. W. V., Campos, J. L., Mendez, R., ´ Vanrolleghem, P. A., Jetten, M., oct 2004. Enrichment of anammox biomass from municipal activated sludge: experimental and modelling results. Journal of Chemical Technology & Biotechnology 79 (12), 1421–1428. DOI: 10.1002/jctb.1148

Desloover, J., Vlaeminck, S. E., Clauwaert, P., Verstraete, W., Boon, N., jun 2012. Strategies to mitigate n2o emissions from biological nitrogen removal systems. Current Opinion in Biotechnology 23 (3), 474-482. DOI: 10.1016/j.copbio.2011.12.030

Doby, T., Loughlin, D., De los Reyes, F., Ducoste, J., 2002. Optimization of activated sludge designs using genetic algorithms. Water science and technology 45 (6), 187–198.

Dochain, D., 1991. Design of adaptive controllers for non-linear stirred tank bioreactors: extension to the mimo situation. Journal of Process Control 1 (1), 41–48.

Dochain, D., Perrier, M., 1993. Control design for nonlinear wastewater treatment processes. Water Science and Technology 28 (11-12), 283–293.

Doglioni, A., Primativo, F., Laucelli, D., Monno, V., Khu, S.-T., Giustolisi, O., dec 2009. An integrated modelling approach for the assessment of land use change effects on wastewater infrastructures. Environmental Modelling & Software 24 (12), 1522–1528. DOI: 10.1016/j.envsoft.2009.06.006

Ekman, M., Bjorlenius, B., Andersson, M., 2006. Control ¨ of the aeration volume in an activated sludge process using supervisory control strategies. Water research 40 (8), 1668–1676.

Flores-Alsina, X., Arnell, M., Amerlinck, Y., Corominas, L., Gernaey, K. V., Guo, L., Lindblom, E., Nopens, I., Porro, J., Shaw, A., Snip, L., Vanrolleghem, P. A., Jeppsson, U., jan 2014. Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs. Science of The Total Environment 466-467, 616–624. DOI: 10.1016/j.scitotenv.2013.07.046

Flores-Alsina, X., Corominas, L., Snip, L., Vanrolleghem, P. A., oct 2011. Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies. Water Research 45 (16), 4700–4710. DOI: 10.1016/j.watres.2011.04.040

Flores-Alsina, X., Rodr´ıguez-Roda, I., Sin, G., Gernaey, K. V., 2008. Multicriteria evaluation of wastewater treatment plant control strategies under uncertainty. Water research 42 (17), 4485–4497.

Francisco, M., Skogestad, S., Vega, P., 2015. Model predictive control for the self-optimized operation inwastewater treatment plants: Analysis of dynamic issues. Computers and Chemical Engineering 82, 259–272.

Fu, G., Butler, D., may 2012. Frequency analysis of river water quality using integrated urban wastewater models. Water Science & Technology 65 (12), 2112. DOI: 10.2166/wst.2012.127

Fu, G., Khu, S.-T., Butler, D., mar 2010. Optimal distribution and control of storage tank to mitigate the impact of new developments on receiving water quality. Journal of Environmental Engineering 136 (3), 335–342. DOI: 10.1061/(asce)ee.1943-7870.0000161

Gernaey, K. V., Jørgensen, S. B., mar 2004. Benchmarking combined biological phosphorus and nitrogen removal wastewater treatment processes. Control Engineering Practice 12 (3), 357–373. DOI: 10.1016/s0967-0661(03)00080-7

Guçlü, D., Dursun, S., 2010. Artificial neural network modelling of a large- ¨ scale wastewater treatment plant operation. Bioprocess and Biosystems Engineering 33 (9), 1051–1058.

Guerrero, J., Guisasola, A., Comas, J., Rodr´ıguez-Roda, I., Baeza, J., apr 2012. Multi-criteria selection of optimum WWTP control setpoints based on microbiology-related failures, effluent quality and operating costs. Chemical Engineering Journal 188, 23–29. DOI: 10.1016/j.cej.2012.01.115

Guo, L., Porro, J., Sharma, K. R., Amerlinck, Y., Benedetti, L., Nopens, I., Shaw, A., Hulle, S. W. H. V., Yuan, Z., Vanrolleghem, P. A., oct 2012. Towards a benchmarking tool for minimizing wastewater utility greenhouse gas footprints. Water Science & Technology 66 (11), 2483. DOI: 10.2166/wst.2012.495

Han, Y., Brdys, M., Piotrowski, R., 6-11 July 2008. Nonlinear pi control for dissolved oxygen tracking at wastewater treatment plant. Seuol, Korea.

Henze, M., Gujer, W., Mino, T., van Loosedrecht, M., 2002. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Reports, No. 9. IWA Publishing.

Hiatt, W. C., Grady, C. P. L., nov 2008. An updated process model for carbon oxidation, nitrification, and denitrification. Water Environment Research 80 (11), 2145–2156. DOI: 10.2175/106143008x304776

Holenda, B., Domokos, E., Redey, A., Fazakas, J., 2008. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers and Chemicals Engineering 32 (6), 1270–1278.

IFAK, 2007. SIMBA Manual and Reference. Insitut fuer Automation und Kommunikation e. V. Magdeburg, Germany.

Ingildsen, P., 2002. Realising full-scale control in wastewater treatment systems using in situ nutrient sensors. Ph.D. thesis, Department of Industrial Electrical Engineering and Automation.

Ingildsen, P., Olsson, G., Yuan, Z., 2002. A hedging point strategy–balancing effluent quality, economy and robustness in the control of wastewater treatment plants. Water science and technology 45, 317–324.

Jager, R., 1995. Fuzzy logic in control. Ph.D. thesis, Delft University of Technology.

Jeppsson, U., Alex, J., Batstone, D. J., Benedetti, L., Comas, J., Copp, J. B., Corominas, L., Flores-Alsina, X., Gernaey, K. V., Nopens, I., Pons, M.-N., Rodr´ıguez-Roda, I., Rosen, C., Steyer, J.-P., Vanrolleghem, P. A., Volcke, E. I. P., Vrecko, D., jul 2013. Benchmark simulation models,quo vadis? Water Science & Technology 68 (1), 1. DOI: 10.2166/wst.2013.246

Kabouris, J., Georgakakos, A., 1990. Optimal control of the activated sludge process. Water Research 24 (10), 1197–1208.

Kabouris, J. C., Georgakakos, A. P., Camara, A., 1992. Optimal control of the activated sludge process: Effect of sludge storage. Water research 26 (4), 507–517.

Kampschreur, M. J., Tan, N. C. G., Kleerebezem, R., Picioreanu, C., Jetten, M. S. M., van Loosdrecht, M. C. M., jan 2008. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environmental Science & Technology 42 (2), 429–435. DOI: 10.1021/es071667p

Krause, K., Bock ¨ er, K., Londong, J., 2002a. Simulation of a nitrification control concept considering influent ammonium load. Water Science and Technology 45 (4-5), 413–420.

Krause, K., BA˜ ¶cker, K., Londong, J., 2002b. Simulation of a nitrification control concept considering influent ammonium load. Water Science and Technology 45, 413–420.

Lijklema, L., Tyson, J. M., Lesouef, A., 1993. Interactions between sewers, treatment plants and receiving waters in urban areas: a summary of the interurba ’92 workshop conclusions. Water Science and Technolog 27 (12), 1–29.

Lindberg, C., Carlsson, B., 1996a. Nonlinear and set-point control of the dissolved oxygen concentration in an activated sludge process. Water Science and Technology 34 (3-4), 135–142. DOI: 10.1016/0273-1223(96)00565-3

Lindberg, C.-F., Carlsson, B., 1996b. Adaptive control of external carbon flow rate in an activated sludge process. Water science and technology 34 (3-4), 173–180.

Lingireddy, S., Brion, G. M., 2005. Artificial neural networks in water supply engineering. ASCE Publications.

Lukasse, I., Keesman, K., Klapwijk, A., Vanstraten, G., 1998. Optimal control of n-removal in ASPs. Water Science and Technology 38 (3), 255–262. DOI: 10.1016/s0273-1223(98)00483-1

Lukasse, L., Keesman, K., Klapwijk, A., Vanstraten, G., 1999. A comparison of NH/NO control strategies for alternating activated sludge processes. Water Science and Technology 39 (4), 93–102. DOI: 10.1016/s0273-1223(99)00061-x

Lukasse, L. J. S., Keesman, K. J., Klapwijk, A., van Straten, G., 1997. Adaptive receding horizon optimal control of n-removing activated sludge processes. En: In Proc. of the 11th Forum for Applied Biotechnology. Univ. Gent, pp. 1665–1672.

Lynggaard-Jensen, A., anf F. Husum, P. A., Nygaard, M., Kaltoft, J., Landgren, L., MA¸ller, F., E. Brodersen, E., 2010. Increased performance of secondary ˜ clarifiers using dynamic distribution of minimum return sludge rates. Water Science Technology 60 (9), 2439–2445.

Machado, V. C., Gabriel, D., Lafuente, J., Baeza, J. A., dec 2009. Cost and effluent quality controllers design based on the relative gain array for a nutrient removal WWTP. Water Research 43 (20), 5129–5141. DOI: 10.1016/j.watres.2009.08.011

Maeda, K., Inoue, S., Hirotsuji, J., Nonoyama, M., Aya, S., 1990. A new expert system based on deep knowledge for water and wastewater treatment plant. En: In Proc. of the. 5th IAWPRC Workshop on Instrumentation, Control and Automation of Water and Wastewater Treatment and Transport Systems. Pergamon, Yokohama and Kyoto, Japan, pp. 219–226.

Maere, T., Verrecht, B., Moerenhout, S., Judd, S., Nopens, I., mar 2011. BSMMBR: A benchmark simulation model to compare control and operational strategies for membrane bioreactors. Water Research 45 (6), 2181–2190. DOI: 10.1016/j.watres.2011.01.006

Marsili-Libelli, S., 1984. Optimal control of the activated sludge process. Transactions of the Institute of Measurement and Control 6 (3), 146–152.

Marsili-Libelli, S., 1989. Modelling, identification and control of the activated sludge process. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 89–148. URL: http://dx.doi.org/10.1007/BFb0007860 DOI: 10.1007/BFb0007860

Meirlaen, J., Van Assel, J., Vanrolleghem, P. A., 2002. Real time control of the integrated urban wastewater system using simultaneously simulating surrogate models. Wat. Sci. Tech 45 (3), 109–16.

Meneses, M., Concepcion, H., ´ Vilanova, R., apr 2016. Joint environmental and economical analysis of wastewater treatment plants control strategies: A benchmark scenario analysis. Sustainability 8 (4), 360. DOI: 10.3390/su8040360

Meneses, M., Concepcion, H., Vreck ´ o, D., Vilanova, R., nov 2015. Life cycle assessment as an environmental evaluation tool for control strategies in wastewater treatment plants. Journal of Cleaner Production 107, 653–661. DOI: 10.1016/j.jclepro.2015.05.057

Meyer, U., Popel, H., 2003. Fuzzy-control for impro ¨ ved nitrogen removal and energy saving in wwt-plants with pre-denitrification. Water Science and Technology 47 (11), 69–76.

Nasr, M., Moustafa, M., Seif, H., El-Kobrosy, G., 2014. Application of fuzzy logic control for benchmark simulation model. 1. Sustainable Environment Research 24 (4).

Ni, B.-J., Yuan, Z., Chandran, K., Vanrolleghem, P. A., Murthy, S., aug 2012. Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria. Biotechnology and Bioengineering 110 (1), 153–163. DOI: 10.1002/bit.24620

Olsson, G., Andersson, B., Hellstrom, B. G., Holmstrom, H., Reinius, ¨ L. G., Vopatek, P., 1989. Measurements, data analysis and control methods in wastewater treatment plants–state of the art and future trends. Water Science and Technology 21 (10-11), 1333–1345.

Olsson, G., Aspegren, H., Nielsen, M., 1998. Operation and control of wastewater treatment — a scandinavian perspective over 20 years. Water Science and Technology 37 (12), 1–13. DOI: 10.1016/s0273-1223(98)00364-3

Olsson, G., Newell, B., 1999. Wastewater treatment systems: modelling, diagnosis and control. IWA publishing.

Olsson, G., Nielsen, M., Yuan, Z., Lynggaard-Jensen, A., Steyer, J.-P., 2005. Instrumentation, control and automation in wastewater systems. IWA publishing.

Olsson, G., Rundqwist, L., Eriksson, L., Hall, L., 1985. Instrumentation and Control of Water and Wastewater Treatment and Transport Systems, Advances in Water Pollution Control. Int Association on Water Pollution Research and Control, Ch. Self-tuning control of the dissolved oxygen concentration in activated sludge systems, pp. 473–480.

Ostace, G. S., Baeza, J. A., Guerrero, J., Guisasola, A., Cristea, V. M., Agachi, P. S¸., Lafuente, J., jun 2013. Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus. Computers & Chemical Engineering 53, 164–177. DOI: 10.1016/j.compchemeng.2013.03.007

Pan, Y., Ni, B.-J., Yuan, Z., oct 2013. Modeling electron competition among nitrogen oxides reduction and n2o accumulation in denitrification. Environmental Science & Technology 47 (19), 11083–11091. DOI: 10.1021/es402348n

Peng, Y., Ma, Y., Wang, S., Wang, X., 2005. Fuzzy control of nitrogen removal in predenitrification process using orp. Water science and technology 52 (12), 161–169.

Piotrowski, R., Brdys, M., Konarczak, K., Duzinkiewicz, K., Chotkowski, W., 2008. Hierarchical dissolved oxygen control for activated sludge processes. Control Engineering Practice 16 (1), 114–131.

Rauch, W., Bertrand-Krajewski, J. L., Krebs, P., Mark, O., Schilling, W., SchA˜ 1 4 tze, M., Vanrolleghem, P. A., 2002. Deterministic modelling of integrated urban drainage systems. Wat. Sci. Tech. 45. (3), 81–94.

Rauch, W., Harremoes, ¨ P., apr 1999. Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems. Water Research 33 (5), 1265–1277. DOI: 10.1016/s0043-1354(98)00304-2

Revollar, S., Vega, P., Vilanova, R., 2015. Economic optimization of wastewater treatment plants using Non Linear Model Predictive Control. En: 19th International Conference on System Theory, Control and Computing. 14-16 October, Cheile Gradistei, Romania.

Rieger, L., Alex, J., Winkler, S., Boehler, M., Thomann, M., Siegrist, H., 2003. Progress in sensor technology - progress in process control? part i: Sensor property investigation and classification. Water Sci. Technolgy 47 (2), 103– 11.

Rodriguez-Roda, I., Sanchez-Marr ´ e, M., Comas, J., Baeza, J., Colprim, J., La- ´ fuente, J., Cortes, U., Poch., M., 2002. ´ A hybrid supervisory system to support wwtp operation: implementation and validation. Water science and technology 45 (4-5), 289–297.

Rojas, J., Baeza, J. A., Vilanova, R., 2011. Effect of the controller tuning on the performance of the bsm1 using a data driven approach. En: Proceedings of the 8th International IWA Symposium on Systems Analysis and Integrated Assessment in Water Management, San Sebastian, Spain. ´

Rojas, J. D., Flores-Alsina, X., Jeppsson, U., Vilanova, R., 2012. Application of multivariate virtual reference feedback tuning for wastewater treatment plant control. Control Engineering Practice 20, 499–510.

Rossman, L., 2009. Storm water management model user’s manual version 5.0. epa/600/r- 05/040, Tech. rep., National Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, Ohio.

Samie, G., Bernier, J., Rocher, V., Lessard, P., feb 2011. Modeling nitrogen removal for a denitrification biofilter. Bioprocess and Biosystems Engineering 34 (6), 747–755. DOI: 10.1007/s00449-011-0524-0

Samuelsson, P., Carlsson, B., 2001. Feed-forward control of the external carbon flow rate in an activated sludge process. Water science and technology: a journal of the International Association on Water Pollution Research 43, 115–122.

Samuelsson, P., Halvarsson, B., Carlsson, B., 2007. Cost-efficient operation of a denitrifying activated sludge process. Water research 41 (11), 2325–2332.

Santín, I., Pedret, C., Vilanova, R., 2015a. Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process. Journal of Process Control 28, 40–55.

Santín, I., Pedret, C., Vilanova, R., 2015b. Fuzzy control and Model Predictive Control Configurations for Effluent Violations Removal in Wastewater Treatment Plants. Industrial and Engineering Chemistry Research 54 (10), 2763–2775.

Santín, I., Pedret, C., Vilanova, R., 2016. Control and Decision Strategies in ´ Wastewater Treatment Plants for Operation Improvement. Springer.

Santín, I., Pedret, C., Vilanova, R., Meneses, M., 2016. Advanced decision control system for effluent violations removal in wastewater treatment plants. Control Engineering Practice 279, 207–219.

Schmitt, T., Huber, W., oct 2006. The scope of integrated modelling: system boundaries, sub-systems, scales and disciplines. Water Science & Technology 54 (6-7), 405. DOI: 10.2166/wst.2006.595

Schutze, M., Butler, D., Beck, B. M., 2011. Modelling, Simulation and Control of Urban Wastewater Systems. Springer London. Schutze, M., Butler, D., Beck, M., 1999. Optimisation of control strategies for the urban wastewater system? an integrated approach. Water Science and Technology 39 (9), 209–216. DOI: 10.1016/s0273-1223(99)00235-8

Serralta, J., Ribes, J., Seco, A., Ferrer, J., 2002. A supervisory control system for optimising nitrogen removal and aeration energy consumption in wastewater treatment plants. Water Science and Technology 45 (4-5), 309–316.

Shanahan, P., Borchardt, D., Henze, M., Rauch, W., Reichert, P., Somlyody, ´ L., Vanrolleghem, P., 2001. River water quality model no. 1 (rwqm1): I. modelling approach. Water Science and Technology 43 (5), 1–9. URL: http://wst.iwaponline.com/content/43/5/1

Shen, W., Chen, X., Pons, M., Corriou, J., 2009. Model predictive control for wastewater treatment process with feedforward compensation. Chemical Engineering Journal 155 (1-2), 161–174.

Singman, J., 1999. Efficient control of wastewater treatment plant? a benchmark study. Master’s thesis, Department of Earth Sciences, Uppsala University, Sweden.

Stare, A., Vrecko, D., Hvala, N., Strmcnick, S., 2007a. Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: A simulation study. Water Research 41 (9), 2004–2014.

Stare, A., Vrecko, D., Hvala, N., Strm ˇ cnik, S., may 2007b. Comparison ˇ of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: A simulation study. Water Research 41 (9), 2004–2014. DOI: 10.1016/j.watres.2007.01.029

Steffens, M., Lant, P., aug 1999. Multivariable control of nutrient-removing activated sludge systems. Water Research 33 (12), 2864–2878. DOI: 10.1016/s0043-1354(98)00521-1

Stephanopoulos, G., Ng, C., apr 2000. Perspectives on the synthesis of plantwide control structures. Journal of Process Control 10 (2-3), 97–111. DOI: 10.1016/s0959-1524(99)00023-2

Stepner, D., Petersack, J., 1974. Progress in Water Technology, Vol. 6, Instrumentation, Control and Automation for Wastewater Treatment Systems. Pergamon Press, Oxford, Ch. Date management and computerized control of a secondary waste-water-treatment plant, pp. 417–423.

Steyer, J. P., Bernard, O., Batstone, D. J., Angelidaki, I., feb 2006. Lessons learnt from 15 years of ICA in anaerobic digesters. Water Science and Technology 53 (4-5), 25–33. DOI: 10.2166/wst.2006.107

Traore, A., Grieu, S., Thiery, F., Polit, M., Colprim, J., jun 2006. Control of ´ sludge height in a secondary settler using fuzzy algorithms. Computers & Chemical Engineering 30 (8), 1235–1242. DOI: 10.1016/j.compchemeng.2006.02.020

Vanrolleghem, P., 1994. On-line modeling of activated sludge processes: development of an adaptive sensor. Ph.D. thesis, University of Gent.

Vanrolleghem, P., Benedetti, L., Meirlaen, J., apr 2005. Modelling and real-time control of the integrated urban wastewater system. Environmental Modelling & Software 20 (4), 427–442. DOI: 10.1016/j.envsoft.2004.02.004

Vanrolleghem, P. A., Gillot, S., 2002a. Robustness and economic measures as control benchmark performance criteria. Water Science and Technology 45 (4-5), 117–126.

Vanrolleghem, P. A., Gillot, S., 2002b. Robustness and economic measures as control benchmark performance criteria. Water Science and Technology 45 (4-5), 117–126.

Vanrolleghem, P. A., Jeppsson, U., Carstensen, J., Carlssont, B., Olsson, G., 1996. Integration of wastewater treatment plant design and operation: a systematic approach using cost functions. Water Science and Technology 34 (3-4), 159–171.

Vilanova, R., Alfaro, V. M., 2011. Control PID robusto: Una visión panorámica. Revista Iberoamericana de Automatica e Informática Industrial RIAI 8, 141–148.

Vilanova, R., Katebi, R., Alfaro, V., 22-26 September 2009. Multi-loop pi-based control strategies for the activated sludge process. En: In Proc. of the IEEE Conference on Emerging Technologies Factory Automation (ETFA). Mallorca, Spain.

Vilanova, R., Katebi, R., Wahab, N., 2011. N-removal on wastewater treatment plants: A process control approach. Journal of Water Resource and Protection 3, 1–11.

Vilanova, R., Santín, I., Pedret, C., 2017. Control y operacion de estaciones ´ depuradoras de aguas residuales: Modelado y simulacion. Revista Iberoa- ´ mericana de Automatica e Inform ´ atica Industrial RIAI 14 (3), 217 – 233.

Vitasovic, Z., Andrews, J., 1989. An integrated dynamic model and control system for activated sludge wwtp’s part ii - contol systems. Water Poll. Res. J. Canada 24 (4), 49722.

Vrecko, D., Hvala, N., Stare, A., Burica, O., Strazar, M., Levstek, M., Cerar, P., ˇ Podbevsek, S., 2006. Improvement of ammonia removal in activated sludge process with feedforward-feedback aeration controllers. Water Science Technology 53 (4-5), 125–132.

Vrecko, D., Hvala, N., Strazar, M., 2011. The application of model predictive ˇ control of ammonia nitrogen in an activated sludge process. Water Science and Technology 64 (5), 1115–1121.

Wahab, N. A., Katebi, J., R. B., 2009. Multivariable PID control design for activated sludge process with nitrication and denitrication. Biochemical Engineering Journal 45 (3), 239–248.

Yamanaka, O., Obara, T., Yamamoto, K., 2006. Total cost minimization control scheme for biological wastewater treatment process and its evaluation based on the cost benchmark process. Water science and technology: a journal of the International Association on Water Pollution Research 53, 203–214.

Yong, M., Yong-zhen, P., Xiao-lian, W., Shu-ying, W., jun 2006a. Intelligent control aeration and external carbon addition for improving nitrogen removal. Environmental Modelling & Software 21 (6), 821–828. DOI: 10.1016/j.envsoft.2005.02.009

Yong, M., Yongzhen, P., Jeppsson, U., 2006b. Dynamic evaluation of integrated control strategies for enhanced nitrogen removal in activated sludge processes. Control Engineering Practice 14 (11), 1269–1278.

Yuan, Z., Blackall, L. L., jan 2002. Sludge population optimisation: a new dimension for the control of biological wastewater treatment systems. Water Research 36 (2), 482–490. DOI: 10.1016/s0043-1354(01)00230-5

Yuan, Z., Bogaert, H., Rosen, C., Verstraete, W., 2002a. Sludge blanket height control in secondary clarifiers. Water Intelligence Online.

Yuan, Z., Keller, J., 2003. Integrated control of nitrate recirculation and external carbon addition in a predenitrification system. Water science and technology: a journal of the International Association on Water Pollution Research 48, 345–354.

Yuan, Z., Oehmen, A., Ingildsen, P., 2002b. Control of nitrate recirculation flow in predenitrication systems. Water Science and Technology 45, 29–36.

Zhao, L., Chai, T., 2005. In Advances in neural networks. Second international symposium on neural networks. Springer, Ch. Wastewater BOD forecasting model for optimal operation using robust time delay neural network.

Zhu, G., Peng, Y., Ma, B., Wang, Y., Yin, C., 2009. Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal. Chemical Engineering Journal 151 (1), 195–201.

Abstract Views

2342
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. A critical review on life cycle assessment and plant-wide models towards emission control strategies for greenhouse gas from wastewater treatment plants
T.K.L. Nguyen, H.H. Ngo, W.S. Guo, S.W. Chang, D.D. Nguyen, L.D. Nghiem, T.V. Nguyen
Journal of Environmental Management  vol: 264  primera página: 110440  año: 2020  
doi: 10.1016/j.jenvman.2020.110440



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912